The free group of rank 2 is a limit of Thompson's group F

被引:11
|
作者
Brin, Matthew G. [1 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
Thompson's group; limit of marked groups;
D O I
10.4171/GGD/90
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the free group of rank 2 is a limit of 2-markings of Thompson's group F in the space of all 2-marked groups. More specifically, we find a sequence of generating pairs for F so that as one goes out the sequence, the length of the shortest relation satisfied by the generating pair goes to infinity.
引用
收藏
页码:433 / 454
页数:22
相关论文
共 50 条
  • [1] Free limits of Thompson’s group F
    Azer Akhmedov
    Melanie Stein
    Jennifer Taback
    [J]. Geometriae Dedicata, 2011, 155 : 163 - 176
  • [2] Free limits of Thompson's group F
    Akhmedov, Azer
    Stein, Melanie
    Taback, Jennifer
    [J]. GEOMETRIAE DEDICATA, 2011, 155 (01) : 163 - 176
  • [3] Thompson’s group F and the linear group GL∞(ℤ)
    Yan Wu
    Xiaoman Chen
    [J]. Chinese Annals of Mathematics, Series B, 2011, 32 : 863 - 884
  • [4] On the cogrowth of Thompson's group F
    Elder, Murray
    Rechnitzer, Andrew
    Wong, Thomas
    [J]. GROUPS COMPLEXITY CRYPTOLOGY, 2012, 4 (02) : 301 - 320
  • [5] THOMPSON'S GROUP F IS NOT LIOUVILLE
    Kaimanovich, Vadim A.
    [J]. GROUPS, GRAPHS AND RANDOM WALKS, 2017, 436 : 300 - 342
  • [6] Thompson's group F is not SCY
    Friedl, Stefan
    Vidussi, Stefano
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (01) : 325 - 329
  • [7] CONJUGACY IN THOMPSON'S GROUP F
    Gill, Nick
    Short, Ian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1529 - 1538
  • [8] Thompson's group F is not Kahler
    Napier, T
    Ramachandran, M
    [J]. TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 197 - +
  • [9] Autostackability of Thompson's group F
    Corwin, Nathan
    Golan, Gili
    Hermiller, Susan
    Johnson, Ashley
    Sunic, Zoran
    [J]. JOURNAL OF ALGEBRA, 2020, 545 : 111 - 134
  • [10] Combinatorial properties of Thompson's group F
    Cleary, S
    Taback, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (07) : 2825 - 2849