Back contact modification in Sb2Se3 solar cells: The effect of a thin layer of MoSe2

被引:0
|
作者
Ramirez-Velasco, S. [1 ]
Gonzalez-Castillo, J. R. [1 ]
Ayala-Mato, F. [2 ]
Hernandez-Calderon, V [1 ]
Jimenez-Olarte, D. [3 ]
Vigil-Galan, O. [1 ]
机构
[1] Escuela Super Fis & Matemat Inst Politecn Nacl ES, Cdmx 07738, Mexico
[2] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas, Cuernavaca 62209, Morelos, Mexico
[3] Escuela Super Ingn Mecan & Elect Inst Politecn Na, Cdmx 07738, Mexico
关键词
Antimony selenide; Molybdenum selenide; Thin film solar cells; Solar cell simulation; FILM; EFFICIENCY;
D O I
10.1016/j.tsf.2022.139227
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The record efficiency reported for Sb(2)Se(3 )solar cells is 9.2% and different lines of work have been opened with the aim of overcoming the factors that limit this value. Between them, the back contact is one of the aspects that must be considered to improve the efficiency of solar cells. In this work, the effect of forming an intermediate layer between the back contact of Mo and the Sb(2)Se(3 )absorber is studied and its impact on the properties of solar cells processed in substrate configuration: glass/Mo/Sb2Se3/CdS/i-ZnO/ITO, is evaluated. For the study, a series of photovoltaic devices were processed in which selenization processes were carried out in the molybdenum contact under different thermal annealing temperatures in the range of 320 to 400?C to produce the MoSe2 compound. The influence of these thermal processes based on Sb(2)Se(3 )structural properties and the electro-optical properties of solar cells was evaluated. The results revealed that by the introduction of MoSe2, through the selenization of the Mo, the electrical properties of the solar cells are improved, with the best efficiency solar cell of 5.0%. According to our analysis, it is considered that the optimization of the electrical parameters is a consequence of the behavior of MoSe2 as a hole transport layer, giving rise to a n-i-p structure whose internal electrical field is found further within the absorber, which makes the carrier separation process more efficient and prevents recombination. On the other hand, to evaluate the thickness of the MoSe2 layer and determine the physical processes that limit the efficiency of the devices, a simulation process was carried out based on the experimental results.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Enhanced Performance of CdTe Solar Cells with Sb2Se3 Back Contacts
    Liu, Fei
    Wang, Guangwei
    Huang, Zixiang
    Tian, Juan
    Wang, Deliang
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2023, 220 (19):
  • [22] On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact
    Shin, Byungha
    Bojarczuk, Nestor A.
    Guha, Supratik
    APPLIED PHYSICS LETTERS, 2013, 102 (09)
  • [23] The role of interface energetics in Sb2Se3 thin film solar cells
    Krishnan, B. Gokula
    Amirthalakahmi, T. M.
    Prabu, R. Thandaiah
    Kumar, Atul
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [24] Photoconductivity of amorphous Sb2Se3 and Sb2Se3:Sn thin films
    Iovu, M. S.
    Colomeico, E. P.
    Vasiliev, I. A.
    CHALCOGENIDE LETTERS, 2007, 4 (09): : 109 - 113
  • [25] Analysis of CdSe as an alternative buffer layer for Sb2Se3 solar cells
    Torabi, Narges
    Artegiani, Elisa
    Gasparotto, Andrea
    Piccinelli, Fabio
    Meneghini, Matteo
    Meneghesso, Gaudenzio
    Romeo, Alessandro
    SOLAR ENERGY, 2023, 264
  • [26] Sb2Se3 sensitized heterojunction solar cells
    Kulkarni A.N.
    Arote S.A.
    Pathan H.M.
    Patil R.S.
    Mater. Renew. Sustain. Energy, 3 (3):
  • [27] Laser scribing of Sb2Se3 thin-film solar cells
    Giovanardi, Fabio
    Khozeymeh, Foroogh
    Bissoli, Francesco
    Rampino, Stefano
    Gilioli, Edmondo
    Trevisi, Giovanna
    Mazzer, Massimo
    Selleri, Stefano
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [28] Heterostructured CdS Buffer Layer for Sb2Se3 Thin Film Solar Cell
    Amin, Al
    Duan, Xiaomeng
    Wall, Jacob
    Khawaja, Kausar Ali
    Xiang, Wenjun
    Li, Lin
    Yan, Feng
    SOLAR RRL, 2023, 7 (16)
  • [29] Enhancement in the Efficiency of Sb2Se3 Solar Cells by Triple Function of Lithium Hydroxide Modified at the Back Contact Interface
    Guo, Huafei
    Huang, Shan
    Zhu, Honcheng
    Zhang, Tingyu
    Geng, Kangjun
    Jiang, Sai
    Gu, Ding
    Su, Jian
    Lu, Xiaolong
    Zhang, Han
    Zhang, Shuai
    Qiu, Jianhua
    Yuan, Ningyi
    Ding, Jianning
    ADVANCED SCIENCE, 2023, 10 (31)
  • [30] Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer
    Liang Wang
    Deng-Bing Li
    Kanghua Li
    Chao Chen
    Hui-Xiong Deng
    Liang Gao
    Yang Zhao
    Fan Jiang
    Luying Li
    Feng Huang
    Yisu He
    Haisheng Song
    Guangda Niu
    Jiang Tang
    Nature Energy, 2