Dynamical Renormalization Group Approach to the Collective Behavior of Swarms

被引:24
|
作者
Cavagna, Andrea [1 ,2 ]
Di Carlo, Luca [1 ,2 ]
Giardina, Irene [1 ,2 ,3 ]
Grandinetti, Luca [4 ]
Grigera, Tomas S. [5 ,6 ,7 ]
Pisegna, Giulia [1 ,2 ]
机构
[1] UOS Sapienza, Consiglio Nazl Ric, Ist Sistemi Complessi, I-00185 Rome, Italy
[2] Univ Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, Unita Roma 1, I-00185 Rome, Italy
[4] Politecn Torino, Dipartimento Sci Appl & Tecnol, I-10129 Turin, Italy
[5] Univ Nacl La Plata, CONICET, Inst Fis Liquidos & Sistemas Biol, B1900BTE, La Plata, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn, CCT CONICET La Plata, B1904CMC, La Plata, Buenos Aires, Argentina
[7] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina
关键词
D O I
10.1103/PhysRevLett.123.268001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z = d/2, and a stable fixed point with z = 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z = 3/2, a value significantly closer to the experimental window, 1.0 <= z <= 1.3, than the value z approximate to 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] NEW APPROACH TO RENORMALIZATION GROUP
    WEINBERG, S
    [J]. PHYSICAL REVIEW D, 1973, 8 (10): : 3497 - 3509
  • [42] Renormalization group approach to satisfiability
    Coppersmith, S. N.
    [J]. EPL, 2007, 77 (03)
  • [43] EMERGENCE OF COLLECTIVE BEHAVIOR IN DYNAMICAL NETWORKS
    Blank, Michael
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (02): : 313 - 329
  • [44] Collective behavior of nonlinear dynamical oscillators
    Jafari, Sajad
    Bao, Bocheng
    Volos, Christos
    Nazarimehr, Fahimeh
    Bao, Han
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (22-23): : 3957 - 3960
  • [45] Collective behavior of nonlinear dynamical oscillators
    Sajad Jafari
    Bocheng Bao
    Christos Volos
    Fahimeh Nazarimehr
    Han Bao
    [J]. The European Physical Journal Special Topics, 2022, 231 : 3957 - 3960
  • [46] Dynamical Renormalization Group Methods in Theory of Eternal Inflation
    Podolsky, Dmitry
    [J]. GRAVITATION & COSMOLOGY, 2009, 15 (01): : 69 - 74
  • [47] COHERENT REPRESENTATION OF DYNAMICAL RENORMALIZATION GROUP IN BOSE SYSTEMS
    TANAKA, F
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (01): : 289 - 290
  • [48] COHERENT REPRESENTATION OF DYNAMICAL RENORMALIZATION GROUP IN BOSE SYSTEMS
    TANAKA, F
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (06): : 1679 - 1692
  • [49] Fluctuation-dissipation theorem and the dynamical renormalization group
    Giacometti, A
    Maritan, A
    Toigo, F
    Banavar, JR
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (5-6) : 1669 - 1674
  • [50] Dynamical renormalization group methods in theory of eternal inflation
    Dmitry Podolsky
    [J]. Gravitation and Cosmology, 2009, 15 : 69 - 74