Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease

被引:26
|
作者
Uchida, Naoya [1 ,2 ]
Drysdale, Claire M. [1 ]
Nassehi, Tina [1 ]
Gamer, Jackson [1 ]
Yapundich, Morgan [1 ]
DiNicola, Julia [1 ]
Shibata, Yoshitaka [1 ]
Hinds, Malikiya [1 ]
Gudmundsdottir, Bjorg [1 ]
Haro-Mora, Juan J. [1 ]
Demirci, Selami [1 ]
Tisdale, John F. [1 ]
机构
[1] NHLBI, Cellular & Mol Therapeut Branch, NIDDK, NIH, 9000 Rockville Pike,Bldg 10,9N112, Bethesda, MD 20892 USA
[2] Univ Tokyo, Inst Med Sci, Ctr Gene & Cell Therapy, Div Mol & Med Genet,Minato Ku, Tokyo, Japan
关键词
IMMUNODEFICIENCY-VIRUS TYPE-1; STEM-CELLS; IN-VITRO; THERAPY; TRANSDUCTION; EFFICIENCY; ELECTROPORATION; POLYPROTEIN; CD34+CELLS; EXPRESSION;
D O I
10.1016/j.omtm.2021.02.022
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Gene editing with the CRISPR-Cas9 system could revolutionize hematopoietic stem cell (HSC)-targeted gene therapy for hereditary diseases, including sickle cell disease (SCD). Conventional delivery of editing tools by electroporation limits HSC fitness due to its toxicity; therefore, efficient and non-toxic delivery remains crucial. Integrating lentiviral vectors are established for therapeutic gene delivery to engraftable HSCs in gene therapy trials; however, their sustained expression and size limitation preclude their use for CRISPR-Cas9 delivery. Here, we developed a Cas9 protein delivery non-integrating lentiviral system encoding guide RNA and donor DNA, allowing for transient endonuclease function and inclusion of all editing tools in a single vector (all-in-one). We demonstrated efficient one-time correction of the SCD mutation in the endogenous beta s-globin gene up to 42% at the protein level (p < 0.01) with the Cas9 protein delivery non-integrating lentiviral all-in-one system without electroporation. Our findings improve prospects for efficient and safe genome editing.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [41] CRISPR/Cas9 Editing Induces High Rates of Unintended Large Gene Modifications in HSPCs from Patients with Sickle Cell Disease
    Park, So Hyun Julie Park
    Cao, Mingming
    Zhang, Yankai
    Sheehan, Vivien A.
    Bao, Gang
    BLOOD, 2021, 138
  • [42] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia REPLY
    Frangoul, Haydar
    Ho, Tony W.
    Corbacioglu, Selim
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (23):
  • [43] Nanoemulsions as non-viral vectors of the CRISPR/Cas9 system aiming for MPS I gene editing
    Schuh, R. S.
    Carvalho, T. G.
    Bidone, J.
    Pasqualim, G.
    Diel, D.
    Teixeira, H. F.
    Baldo, G.
    HUMAN GENE THERAPY, 2016, 27 (11) : A134 - A134
  • [44] Gene Correction Using CRISPR/Cas9: IND-Enabling Studies to Support a Clinical Trial of a CRISPR/Homology-Directed Repair Treatment for Sickle Cell Disease
    DeWitt, Mark A.
    Magis, Wendy
    Wyman, Stacia K.
    Boffelli, Dario
    Romero, Zulema
    Vu, Jonathan
    Heo, Seok-Jin
    Said, Suzanne
    Hennig, Fiona
    Davila, Alejandra
    Mottahedeh, Jack
    Fernandez, Beatriz C.
    McNeill, Matthew
    Rettig, Garrett R.
    Sun, Yongming
    Lau, Patrick J.
    Wang, Yu
    Behlke, Mark A.
    Urnov, Fyodor
    Kohn, Donald B.
    Corn, Jacob E.
    Martin, David I. K.
    Walters, Mark C.
    MOLECULAR THERAPY, 2020, 28 (04) : 243 - 244
  • [45] Non-integrating lentiviral vectors for specific killing of Epstein-Barr virus nuclear antigen 1-positive B cell lymphoma cells
    Flynn, Ryan P.
    Zacharias, Jeana
    Zhou, Xianzheng
    Cannon, Mark L.
    Philpott, Nicola J.
    JOURNAL OF GENE MEDICINE, 2011, 13 (09): : 487 - 496
  • [46] Non-viral delivery of CRISPR–Cas9 complexes for targeted gene editing via a polymer delivery system
    Jonathan O’Keeffe Ahern
    Irene Lara-Sáez
    Dezhong Zhou
    Rodolfo Murillas
    Jose Bonafont
    Ángeles Mencía
    Marta García
    Darío Manzanares
    Jennifer Lynch
    Ruth Foley
    Qian Xu
    A Sigen
    Fernando Larcher
    Wenxin Wang
    Gene Therapy, 2022, 29 : 157 - 170
  • [47] A non-cationic nucleic acid nanogel for the delivery of the CRISPR/Cas9 gene editing tool
    Ding, Fei
    Huang, Xiangang
    Gao, Xihui
    Xie, Miao
    Pan, Gaifang
    Li, Qifeng
    Song, Jie
    Zhu, Xinyuan
    Zhang, Chuan
    NANOSCALE, 2019, 11 (37) : 17211 - 17215
  • [48] CRISPR/Cas9 Genome-Edited Autologous Hematopoietic Stem Cell Transplantation Therapies for Sickle Cell Disease
    Liu, Yi
    Yu, Vionnie W.
    Zhang, Qi
    Panditrao, Madhura
    Yang, Yi
    Del Rio-Espinola, Alberto
    Aibo, Daher Ibrahim
    Elhajouji, Azeddine
    Mueller, Konrad
    Abitorabi, Karin
    O'Connell, Daniel
    Han, Bo
    Patel, Nishit
    Russ, Carsten
    Mickanin, Craig
    MacLachlan, Timothy K.
    Stevenson, Susan C.
    BLOOD, 2022, 140 : 12982 - 12983
  • [49] CRISPR/Cas9 in the treatment of sickle cell disease (SCD) and its comparison with traditional treatment approaches: a review
    Tariq, Hamza
    Khurshid, Fatima
    Khan, Muhammad Hamza
    Dilshad, Aamna
    Zain, Ahmad
    Rasool, Warda
    Jawaid, Alishba
    Kunwar, Digbijay
    Khanduja, Sneha
    Akbar, Anum
    ANNALS OF MEDICINE AND SURGERY, 2024, 86 (10): : 5938 - 5946
  • [50] Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: an overview
    Rouatbi, Nadia
    McGlynn, Tasneem
    Al-Jamal, Khuloud T.
    BIOMATERIALS SCIENCE, 2022, 10 (13) : 3410 - 3432