Cas9 protein delivery non-integrating lentiviral vectors for gene correction in sickle cell disease

被引:26
|
作者
Uchida, Naoya [1 ,2 ]
Drysdale, Claire M. [1 ]
Nassehi, Tina [1 ]
Gamer, Jackson [1 ]
Yapundich, Morgan [1 ]
DiNicola, Julia [1 ]
Shibata, Yoshitaka [1 ]
Hinds, Malikiya [1 ]
Gudmundsdottir, Bjorg [1 ]
Haro-Mora, Juan J. [1 ]
Demirci, Selami [1 ]
Tisdale, John F. [1 ]
机构
[1] NHLBI, Cellular & Mol Therapeut Branch, NIDDK, NIH, 9000 Rockville Pike,Bldg 10,9N112, Bethesda, MD 20892 USA
[2] Univ Tokyo, Inst Med Sci, Ctr Gene & Cell Therapy, Div Mol & Med Genet,Minato Ku, Tokyo, Japan
关键词
IMMUNODEFICIENCY-VIRUS TYPE-1; STEM-CELLS; IN-VITRO; THERAPY; TRANSDUCTION; EFFICIENCY; ELECTROPORATION; POLYPROTEIN; CD34+CELLS; EXPRESSION;
D O I
10.1016/j.omtm.2021.02.022
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Gene editing with the CRISPR-Cas9 system could revolutionize hematopoietic stem cell (HSC)-targeted gene therapy for hereditary diseases, including sickle cell disease (SCD). Conventional delivery of editing tools by electroporation limits HSC fitness due to its toxicity; therefore, efficient and non-toxic delivery remains crucial. Integrating lentiviral vectors are established for therapeutic gene delivery to engraftable HSCs in gene therapy trials; however, their sustained expression and size limitation preclude their use for CRISPR-Cas9 delivery. Here, we developed a Cas9 protein delivery non-integrating lentiviral system encoding guide RNA and donor DNA, allowing for transient endonuclease function and inclusion of all editing tools in a single vector (all-in-one). We demonstrated efficient one-time correction of the SCD mutation in the endogenous beta s-globin gene up to 42% at the protein level (p < 0.01) with the Cas9 protein delivery non-integrating lentiviral all-in-one system without electroporation. Our findings improve prospects for efficient and safe genome editing.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [1] Development of Cas9 Protein Delivery Non-Integrating Lentiviral Vectors for Gene Correction in Sickle Cell Disease
    Uchida, Naoya
    Nassehi, Tina
    Drysdale, Claire M.
    Gamer, Jackson
    Yapundich, Morgan
    Demirci, Selami
    Haro-Mora, Juan J.
    Tisdale, John F.
    MOLECULAR THERAPY, 2020, 28 (04) : 395 - 396
  • [2] Transient gene expression by Non-Integrating Lentiviral (NIL) vectors
    Nightingale, S
    Hollis, RP
    Yang, C
    Bahner, I
    Pepper, KA
    Kohn, DB
    MOLECULAR THERAPY, 2004, 9 : S159 - S160
  • [3] Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors
    A A Rahim
    A M S Wong
    S J Howe
    S M K Buckley
    A D Acosta-Saltos
    K E Elston
    N J Ward
    N J Philpott
    J D Cooper
    P N Anderson
    S N Waddington
    A J Thrasher
    G Raivich
    Gene Therapy, 2009, 16 : 509 - 520
  • [4] Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors
    Rahim, A. A.
    Wong, A. M. S.
    Howe, S. J.
    Buckley, S. M. K.
    Acosta-Saltos, A. D.
    Elston, K. E.
    Ward, N. J.
    Philpott, N. J.
    Cooper, J. D.
    Anderson, P. N.
    Waddington, S. N.
    Thrasher, A. J.
    Raivich, G.
    GENE THERAPY, 2009, 16 (04) : 509 - 520
  • [5] Stable gene transfer to muscle using non-integrating lentiviral vectors
    Apolonia, Luis
    Waddington, Simon N.
    Fernandes, Carolina
    Ward, Natalie J.
    Bouma, Gerben
    Blundell, Michael P.
    Thrasher, Adrian J.
    Collins, Mary K.
    Philpott, Nicola J.
    MOLECULAR THERAPY, 2007, 15 (11) : 1947 - 1954
  • [6] Non-Integrating Lentiviral Vectors for Efficient and Transient Delivery of Zinc Finger Nucleases and Donor Constructs for Site-Specific Gene Correction
    Joglekar, Alok V.
    Hoban, Megan D.
    Urbinati, Fabrizia
    Kuftinec, Gabriela
    Senadheera, Shantha
    Reik, Andreas
    Flinders, Colin
    Holmes, Michael C.
    Gregory, Philip D.
    Hollis, Roger P.
    Kohn, Donald B.
    MOLECULAR THERAPY, 2012, 20 : S152 - S153
  • [7] Efficient gene delivery to the adult and fetal central nervous system using pseudotyped non-integrating lentiviral vectors
    Rahim, A. A.
    Waddington, S. N.
    Wong, A. M. S.
    Ward, N. J.
    Elston, K. E.
    Buckley, S. M. K.
    Philpott, N. J.
    Cooper, J. D.
    Anderson, P. N.
    Thrasher, A. J.
    Raivich, G.
    HUMAN GENE THERAPY, 2008, 19 (04) : 398 - 398
  • [8] CRISPR/Cas9 gene editing for curing sickle cell disease
    Park, So Hyun
    Bao, Gang
    TRANSFUSION AND APHERESIS SCIENCE, 2021, 60 (01)
  • [9] Development of a Cas9 Protein Delivery System with Lentiviral Vectors for RNA-Guided Genome Editing
    Uchida, Naoya
    Shvygin, Anna
    Skala, Luke
    Raines, Lydia
    Ballantine, Josiah
    Tisdale, John
    MOLECULAR THERAPY, 2016, 24 : S2 - S2
  • [10] Delivery of CRISPR/Cas9 system by AAV as vectors for gene therapy
    Wang, Yanan
    Jiang, Haibin
    Li, Mopu
    Xu, Zidi
    Xu, Hang
    Chen, Yuetong
    Chen, Kepei
    Zheng, Weihong
    Lin, Wei
    Liu, Zhiming
    Lin, Zhenlang
    Zhang, Min
    GENE, 2024, 927