On elements of large order on elliptic curves and multiplicative dependent images of rational functions over finite fields

被引:2
|
作者
Kerr, Bryce [1 ]
Mello, Jorge [2 ]
Shparlinski, Igor E. [2 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku, Finland
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
基金
芬兰科学院; 澳大利亚研究理事会;
关键词
POLYNOMIALS; ORBITS; POINTS;
D O I
10.1215/00192082-9043478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E-1 and E-2 be elliptic curves in Legendre form with integer parameters. We show there exists a constant C such that for almost all primes, for all but at most C pairs of points on the reduction of E-1 x E-2 modulo p having equal x coordinate, at least one among P-1 and P-2 has a large group order. We also show similar abundance over finite fields of elements whose images under the reduction modulo p of a finite set of rational functions have large multiplicative orders.
引用
收藏
页码:499 / 514
页数:16
相关论文
共 50 条
  • [41] Group Structures of Elliptic Curves Over Finite Fields
    Chandee, Vorrapan
    David, Chantal
    Koukoulopoulos, Dimitris
    Smith, Ethan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (19) : 5230 - 5248
  • [42] Torsion of rational elliptic curves over quadratic fields II
    Gonzalez-Jimenez, Enrique
    Tornero, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 121 - 143
  • [43] Division polynomials of elliptic curves over finite fields
    Cheon, J
    Hahn, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (10) : 226 - 227
  • [44] Lattices from elliptic curves over finite fields
    Fukshansky, Lenny
    Maharaj, Hiren
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 : 67 - 78
  • [46] Torsion of rational elliptic curves over quadratic fields II
    Enrique González-Jiménez
    José M. Tornero
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 121 - 143
  • [47] Group structure of elliptic curves over finite fields
    Wittmann, C
    JOURNAL OF NUMBER THEORY, 2001, 88 (02) : 335 - 344
  • [48] A CONCISE FORMULA ON ELLIPTIC CURVES OVER FINITE FIELDS
    Li, Lingyun
    Zhang, Shaohua
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01): : 21 - 25
  • [49] Digital signature with elliptic curves over the finite fields
    Alinejad, M.
    Zadeh, S. Hassan
    Biranvand, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05): : 1289 - 1301
  • [50] ON THE MERTENS CONJECTURE FOR ELLIPTIC CURVES OVER FINITE FIELDS
    Humphries, Peter
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) : 19 - 32