Next-generation sequencing and the evolution of data sharing

被引:4
|
作者
de Macena Sobreira, Nara Lygia [1 ]
Hamosh, Ada [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, McKusick Nathans Dept Genet Med, 733 North Broadway,St Suite 569, Baltimore, MD 21205 USA
关键词
data sharing; GeneMatcher; model organisms; VariantMatcher; whole exome sequencing; DISEASE GENE; RARE;
D O I
10.1002/ajmg.a.62239
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Disease gene identification often relies on identifying multiple affected individuals with similar phenotypes and candidate variants in the same gene. Phenotypic and genomic data sharing tools have facilitated connections that led to novel disease gene discoveries and better characterization and recognition of rare diseases. Additionally, data sharing has evolved. From gene-based matches to variant-level information with increasing use of phenotypic information. We expect that these initiatives will continue to expand in the future affording clinicians, researchers, and most importantly, patients and their families faster and more comprehensive answers.
引用
收藏
页码:2633 / 2635
页数:3
相关论文
共 50 条
  • [31] APPLICATIONS OF NEXT-GENERATION SEQUENCING Sequencing technologies - the next generation
    Metzker, Michael L.
    [J]. NATURE REVIEWS GENETICS, 2010, 11 (01) : 31 - 46
  • [32] Computational classification of microRNAs in next-generation sequencing data
    Riback, Joshua
    Hatzigeorgiou, Artemis G.
    Reczko, Martin
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2010, 125 (3-6) : 637 - 642
  • [33] Visual programming for next-generation sequencing data analytics
    Franco Milicchio
    Rebecca Rose
    Jiang Bian
    Jae Min
    Mattia Prosperi
    [J]. BioData Mining, 9
  • [34] Discovering genetic polymorphisms in next-generation sequencing data
    Imelfort, Michael
    Duran, Chris
    Batley, Jacqueline
    Edwards, David
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2009, 7 (04) : 312 - 317
  • [35] Predictive Coding of Aligned Next-Generation Sequencing Data
    Voges, Jan
    Munderloh, Marco
    Ostermann, Joern
    [J]. 2016 DATA COMPRESSION CONFERENCE (DCC), 2016, : 241 - 250
  • [36] Visual programming for next-generation sequencing data analytics
    Milicchio, Franco
    Rose, Rebecca
    Bian, Jiang
    Min, Jae
    Prosperi, Mattia
    [J]. BIODATA MINING, 2016, 9
  • [37] Zseq: An Approach for Preprocessing Next-Generation Sequencing Data
    Alkhateeb, Abedalrhman
    Rueda, Luis
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (08) : 746 - 755
  • [38] SeedsGraph: an efficient assembler for next-generation sequencing data
    Wang, Chunyu
    Guo, Maozu
    Liu, Xiaoyan
    Liu, Yang
    Zou, Quan
    [J]. BMC MEDICAL GENOMICS, 2015, 8
  • [39] Qualimap: evaluating next-generation sequencing alignment data
    Garcia-Alcalde, Fernando
    Okonechnikov, Konstantin
    Carbonell, Jose
    Cruz, Luis M.
    Goetz, Stefan
    Tarazona, Sonia
    Dopazo, Joaquin
    Meyer, Thomas F.
    Conesa, Ana
    [J]. BIOINFORMATICS, 2012, 28 (20) : 2678 - 2679
  • [40] Next-generation sequencing data analysis on cloud computing
    Kwon, Taesoo
    Yoo, Won Gi
    Lee, Won-Ja
    Kim, Won
    Kim, Dae-Won
    [J]. GENES & GENOMICS, 2015, 37 (06) : 489 - 501