Attractive and repulsive residue fragments at the interface of SARS-CoV-2 and hACE2

被引:5
|
作者
Rodriguez, Jorge H. [1 ]
机构
[1] Purdue Univ, Dept Phys & Astron, Computat Biomol Phys Grp, W Lafayette, IN 47907 USA
关键词
RECEPTOR-BINDING DOMAIN; SPIKE; CORONAVIRUS; ACE2;
D O I
10.1038/s41598-021-91877-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The initial stages of SARS-CoV-2 coronavirus attachment to human cells are mediated by non-covalent interactions of viral spike (S) protein receptor binding domains (S-RBD) with human ACE2 receptors (hACE2). Structural characterization techniques, such as X-ray crystallography (XRC) and cryoelectron microscopy (cryo-EM), previously identified SARS-CoV-2 spike protein conformations and their surface residues in contact with hACE2. However, recent quantum-biochemical calculations on the structurally related S-RBD of SARS-CoV-1 identified some contact-residue fragments as intrinsically attractive and others as repulsive. This indicates that not all surface residues are equally important for hACE2 attachment. Here, using similar quantum-biochemical methods, we report some four-residue fragments (i.e quartets) of the SARS-CoV-2 S-RBD as intrinsically attractive towards hACE2 and, therefore, directly promoting host-virus non-covalent binding. Other fragments are found to be repulsive although involved in intermolecular recognition. By evaluation of their respective intermolecular interaction energies we found two hACE2 fragments that include contact residues (ASP30, LYS31, HIS34) and (ASP38, TYR41, GLN42), respectively, behaving as important SARS-CoV-2 attractors. LYS353 also promotes viral binding via several mechanisms including dispersion van der Waals forces. Similarly, among others, three SARS-CoV-2 S-RBD fragments that include residues (GLN498, THR500, ASN501), (GLU484, PHE486, ASN487) and (LYS417), respectively, were identified as hACE2 attractors. In addition, key hACE2 quartets identified as weakly-repulsive towards the S-RBD of SARS-CoV-1 were found strongly attractive towards SARS-CoV-2 explaining, in part, the stronger binding affinity of hACE2 towards the latter coronavirus. These findings may guide the development of synthetic antibodies or identify potential viral epitopes.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The Tissue Distribution of SARS-CoV-2 in Transgenic Mice With Inducible Ubiquitous Expression of hACE2
    Dolskiy, Alexander A.
    Gudymo, Andrey S.
    Taranov, Oleg S.
    Grishchenko, Irina V.
    Shitik, Ekaterina M.
    Prokopov, Dmitry Yu
    Soldatov, Vladislav O.
    Sobolevskaya, Elvira V.
    Bodnev, Sergey A.
    Danilchenko, Natalia V.
    Moiseeva, Anastasia A.
    Torzhkova, Polina Y.
    Bulanovich, Yulia A.
    Onhonova, Galina S.
    Ivleva, Elena K.
    Kubekina, Marina V.
    Belykh, Andrey E.
    Tregubchak, Tatiana V.
    Ryzhikov, Alexander B.
    Gavrilova, Elena V.
    Maksyutov, Rinat A.
    Deykin, Alexey V.
    Yudkin, Dmitry V.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 8
  • [22] The Infection and Pathogenicity of SARS-CoV-2 Variant B.1.351 in hACE2 Mice
    Qi Chen
    Xing-Yao Huang
    Ying Tian
    Changfa Fan
    Mengxu Sun
    Chao Zhou
    Ruiting Li
    Rong-Rong Zhang
    Guizhen Wu
    Cheng-Feng Qin
    Virologica Sinica, 2021, (05) : 1232 - 1235
  • [23] De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2
    Linsky, Thomas W.
    Vergara, Renan
    Codina, Nuria
    Nelson, Jorgen W.
    Walker, Matthew J.
    Su, Wen
    Barnes, Christopher O.
    Hsiang, Tien-Ying
    Esser-Nobis, Katharina
    Yu, Kevin
    Reneer, Z. Beau
    Hou, Yixuan J.
    Priya, Tanu
    Mitsumoto, Masaya
    Pong, Avery
    Lau, Uland Y.
    Mason, Marsha L.
    Chen, Jerry
    Chen, Alex
    Berrocal, Tania
    Peng, Hong
    Clairmont, Nicole S.
    Castellanos, Javier
    Lin, Yu-Ru
    Josephson-Day, Anna
    Baric, Ralph S.
    Fuller, Deborah H.
    Walkey, Carl D.
    Ross, Ted M.
    Swanson, Ryan
    Bjorkman, Pamela J.
    Gale, Michael, Jr.
    Blancas-Mejia, Luis M.
    Yen, Hui-Ling
    Silva, Daniel-Adriano
    SCIENCE, 2020, 370 (6521) : 1208 - +
  • [24] Proteome and ubiquitinome analyses of the brain cortex in K18-hACE2 hACE2 mice infected with SARS-CoV-2
    Wang, Qiaochu
    Peng, Wanjun
    Yang, Yehong
    Wu, Yue
    Han, Rong
    Ding, Tao
    Zhang, Xutong
    Liu, Jiangning
    Yang, Juntao
    Liu, Jiangfeng
    ISCIENCE, 2024, 27 (09)
  • [25] An inducible hACE2 transgenic mouse model recapitulates SARS-CoV-2 infection and pathogenesis in vivo
    Liu, Kuo
    Tang, Muxue
    Xu, Wei
    Meng, Xinfeng
    Jin, Hengwei
    Han, Maoying
    Pu, Jing
    Li, Yutang
    Jiao, Fanke
    Sun, Ruilin
    Shen, Ruling
    Lui, Kathy O.
    Lu, Lu
    Zhou, Bin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (25)
  • [26] Interaction of Receptor-Binding Domain of the SARS-CoV-2 Omicron Variant with hACE2 and Actin
    Fujimoto, Ai
    Kawai, Haruki
    Kawamura, Rintaro
    Kitamura, Akira
    CELLS, 2024, 13 (16)
  • [27] A novel plant lectin, NTL-125, interferes with SARS-CoV-2 interaction with hACE2
    Sarkar, Anindya
    Paul, Sathi
    Singh, Charandeep
    Chowdhury, Nilkanta
    Nag, Papri
    Das, Swarnava
    Kumar, Sahil
    Sharma, Anshul
    Das, Deepjyoti Kumar
    Dutta, Dipak
    Thakur, Krishan Gopal
    Bagchi, Angshuman
    Shriti, Surbhi
    Das, Kali P.
    Ringe, Rajesh P.
    Das, Sampa
    VIRUS RESEARCH, 2022, 315
  • [28] Protocol for infecting and monitoring susceptible k18 -hACE2 mice with SARS-CoV-2
    Couto, Joana
    Goncalves, Rute
    Lamas, Sofia
    Saraiva, Margarida
    STAR PROTOCOLS, 2023, 4 (02):
  • [29] Structure adaptation in Omicron SARS-CoV-2/ hACE2: Biophysical origins of evolutionary driving forces
    Hsiao, Ya-Wen
    Bray, David J.
    Taddese, Tseden
    Jimenez-Serratos, Guadalupe
    Crain, Jason
    BIOPHYSICAL JOURNAL, 2023, 122 (20) : 4057 - 4067
  • [30] Unbinding of hACE2 and inhibitors from the receptor binding domain of SARS-CoV-2 spike protein
    Mishra, Lokpati
    Bandyopadhyay, Tusar
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (08): : 3245 - 3264