FRT construction for dynamical Yang-Baxter maps

被引:4
|
作者
Shibukawa, Youichi [1 ]
Takeuchi, Mitsuhiro [2 ]
机构
[1] Hokkaido Univ, Fac Sci, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 305, Japan
关键词
Bialgebroids; Dynamical representations; Dynamical Yang-Baxter maps; FRT construction; L-operators; Tensor categories; DELTA-FUNCTION INTERACTION; QUANTUM GROUPOIDS; BODY PROBLEM; EQUATION; ALGEBRAS;
D O I
10.1016/j.jalgebra.2009.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Notions of an (H. X)-bialgebioid and of its dynamical representation are proposed. The dynamical representations of each (H. X)bralgebroid form a tensor category. Every dynamical Yang-Baxter map R(lambda) satisfying suitable conditions. a generalization of the set-theoretical solution to the quantum Yang-Baxter equation, gives birth to air (H. X)-bialgebroid A(R). The categories of L-operators for R(lambda) and of dynamical representations of AR are isomorphic as tensor categories, (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1698 / 1728
页数:31
相关论文
共 50 条
  • [21] ON THE CONSTRUCTION OF TRIGONOMETRIC SOLUTIONS OF THE YANG-BAXTER EQUATION
    DELIUS, GW
    GOULD, MD
    ZHANG, YZ
    NUCLEAR PHYSICS B, 1994, 432 (1-2) : 377 - 403
  • [22] Non-Commutative Rational Yang-Baxter Maps
    Doliwa, Adam
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (03) : 299 - 309
  • [23] The classical dynamical Yang-Baxter equation and Lie algebroids
    Bangoura, M
    Kosmann-Schwarzbach, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (06): : 541 - 546
  • [24] Universal solutions of quantum dynamical Yang-Baxter equations
    Arnaudon, D
    Buffenoir, E
    Ragoucy, E
    Roche, P
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (03) : 201 - 214
  • [25] Dynamical Yang-Baxter equation and quantum vector bundles
    Donin, J
    Mudrov, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (03) : 719 - 760
  • [26] Yang-Baxter Maps from the Discrete BKP Equation
    Kakei, Saburo
    Nimmo, Jonathan J. C.
    Willox, Ralph
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [27] On non-abelian quadrirational Yang-Baxter maps
    Kassotakis, Pavlos
    Kouloukas, Theodoros
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (17)
  • [28] Poisson Yang-Baxter maps with binomial Lax matrices
    Kouloukas, Theodoros E.
    Papageorgiou, Vassilios G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [29] Dynamical Yang-Baxter Equation and Quantum Vector Bundles
    J. Donin
    A. Mudrov
    Communications in Mathematical Physics, 2005, 254 : 719 - 760
  • [30] Clifford algebras and the classical dynamical Yang-Baxter equation
    Alekseev, A
    Meinrenken, E
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (2-3) : 253 - 268