Nonparametric Bayesian inference for the spectral density function of a random field

被引:22
|
作者
Zheng, Yanbing [1 ]
Zhu, Jun [2 ]
Roy, Anindya [3 ]
机构
[1] Univ Kentucky, Dept Stat, Lexington, KY 40506 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
基金
美国国家科学基金会;
关键词
Bernstein polynomial prior; Dirichlet process; Markov chain Monte Carlo algorithm; Multi-dimensional Bernstein polynomial; Periodogram; Whittle's approximation; DIRICHLET; MIXTURES;
D O I
10.1093/biomet/asp066
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A powerful technique for inference concerning spatial dependence in a random field is to use spectral methods based on frequency domain analysis. Here we develop a nonparametric Bayesian approach to statistical inference for the spectral density of a random field. We construct a multi-dimensional Bernstein polynomial prior for the spectral density and devise a Markov chain Monte Carlo algorithm to simulate from the posterior of the spectral density. The posterior sampling enables us to obtain a smoothed estimate of the spectral density as well as credible bands at desired levels. Simulation shows that our proposed method is more robust than a parametric approach. For illustration, we analyse a soil data example.
引用
收藏
页码:238 / 245
页数:8
相关论文
共 50 条
  • [1] Nonparametric Bayesian inference for the spectral density based on irregularly spaced data
    Zhang, Shibin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 151
  • [2] On nonparametric Bayesian inference for the distribution of a random sample
    Gelfand, AE
    Mukhopadhyay, S
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1995, 23 (04): : 411 - 420
  • [3] Bayesian nonparametric inference for random distributions and related functions
    Walker, SG
    Damien, P
    Laud, PW
    Smith, AFM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 485 - 527
  • [4] Bayesian Nonparametric Inference for a Multivariate Copula Function
    Juan Wu
    Xue Wang
    Stephen G. Walker
    [J]. Methodology and Computing in Applied Probability, 2014, 16 : 747 - 763
  • [5] Bayesian Nonparametric Inference for a Multivariate Copula Function
    Wu, Juan
    Wang, Xue
    Walker, Stephen G.
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) : 747 - 763
  • [6] Missing not at random and the nonparametric estimation of the spectral density
    Efromovich, Sam
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (05) : 652 - 675
  • [7] Nonparametric inference for the proportionality function in the random censorship model
    Hollander, M
    Laird, G
    Song, KS
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (02) : 151 - 169
  • [8] Discrete random probability measures: a general framework for nonparametric Bayesian inference
    Ongaro, A
    Cattaneo, C
    [J]. STATISTICS & PROBABILITY LETTERS, 2004, 67 (01) : 33 - 45
  • [9] CENTER-ADJUSTED INFERENCE FOR A NONPARAMETRIC BAYESIAN RANDOM EFFECT DISTRIBUTION
    Li, Yisheng
    Mueller, Peter
    Lin, Xihong
    [J]. STATISTICA SINICA, 2011, 21 (03) : 1201 - 1223
  • [10] Bayesian nonparametric generative models for causal inference with missing at random covariates
    Roy, Jason
    Lum, Kirsten J.
    Zeldow, Bret
    Dworkin, Jordan D.
    Re, Vincent Lo
    Daniels, Michael J.
    [J]. BIOMETRICS, 2018, 74 (04) : 1193 - 1202