CENTER-ADJUSTED INFERENCE FOR A NONPARAMETRIC BAYESIAN RANDOM EFFECT DISTRIBUTION

被引:22
|
作者
Li, Yisheng [1 ]
Mueller, Peter [2 ]
Lin, Xihong [3 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
Bayesian nonparametric model; Dirichlet process; fixed effects; generalized linear mixed model; post-processing; random moments; random probability measure; LINEAR MIXED MODELS; DIRICHLET PROCESS MIXTURE;
D O I
10.5705/ss.2009.180
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dirichlet process (DP) priors are a popular choice for semiparametric Bayesian random effect models. The fact that the DP prior implies a non-zero mean for the random effect distribution creates an identifiability problem that complicates the interpretation of, and inference for, the fixed effects that are paired with the random effects. Similarly, the interpretation of, and inference for, the variance components of the random effects also becomes a challenge. We propose an adjustment of conventional inference using a post-processing technique based on an analytic evaluation of the moments of the random moments of the DP. The adjustment for the moments of the DP can be conveniently incorporated into Markov chain Monte Carlo simulations at essentially no additional computational cost. We conduct simulation studies to evaluate the performance of the proposed inference procedure in both a linear mixed model and a logistic linear mixed effect model. We illustrate the method by applying it to a prostate specific antigen dataset. We provide an R function that allows one to implement the proposed adjustment in a post-processing step of posterior simulation output, without any change to the posterior simulation itself.
引用
收藏
页码:1201 / 1223
页数:23
相关论文
共 50 条
  • [1] On nonparametric Bayesian inference for the distribution of a random sample
    Gelfand, AE
    Mukhopadhyay, S
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1995, 23 (04): : 411 - 420
  • [2] Bayesian nonparametric inference for random distributions and related functions
    Walker, SG
    Damien, P
    Laud, PW
    Smith, AFM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 485 - 527
  • [3] Nonparametric Bayesian inference for the spectral density function of a random field
    Zheng, Yanbing
    Zhu, Jun
    Roy, Anindya
    [J]. BIOMETRIKA, 2010, 97 (01) : 238 - 245
  • [4] Discrete random probability measures: a general framework for nonparametric Bayesian inference
    Ongaro, A
    Cattaneo, C
    [J]. STATISTICS & PROBABILITY LETTERS, 2004, 67 (01) : 33 - 45
  • [5] Bayesian nonparametric generative models for causal inference with missing at random covariates
    Roy, Jason
    Lum, Kirsten J.
    Zeldow, Bret
    Dworkin, Jordan D.
    Re, Vincent Lo
    Daniels, Michael J.
    [J]. BIOMETRICS, 2018, 74 (04) : 1193 - 1202
  • [6] Nonparametric Bayesian inference in applications
    Peter Müeller
    Fernando A. Quintana
    Garritt Page
    [J]. Statistical Methods & Applications, 2018, 27 : 175 - 206
  • [7] Nonparametric applications of Bayesian inference
    Chamberlain, G
    Imbens, GW
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) : 12 - 18
  • [8] Nonparametric Bayesian inference in applications
    Mueeller, Peter
    Quintana, Fernando A.
    Page, Garritt
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 175 - 206
  • [9] Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics
    Jim Griffin
    Maria Kalli
    Mark Steel
    [J]. Statistical Methods & Applications, 2018, 27 : 207 - 218
  • [10] Discussion of "Nonparametric Bayesian Inference in Applications": Bayesian nonparametric methods in econometrics
    Griffin, Jim
    Kalli, Maria
    Steel, Mark
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 207 - 218