Adaptive stochastic approximation by the simultaneous perturbation method

被引:267
|
作者
Spall, JC [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
adaptive estimation; optimization; parameter estimation; root-finding; simultaneous perturbation stochastic approximation (SPSA); stochastic approximation;
D O I
10.1109/TAC.2000.880982
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic approximation (SA! has long been applied for problems of minimizing loss functions or root finding with noisy input information. As with all stochastic search algorithms, there are adjustable algorithm coefficients that must be specified, and that can have a profound effect on algorithm performance. It is known that choosing these coefficients according to an SA analog of the deterministic Newton-Raphson algorithm provides an optimal or near-optimal form of the algorithm. However, directly determining the required Hessian matrix (or Jacobian matrix for root finding) to achieve this algorithm form has often been difficult or impossible in practice, This paper presents a general adaptive SA algorithm that is based on a simple method for estimating the Hessian matrix, while concurrently estimating the primary parameters of interest. The approach applies in both the gradient-free optimization (Kiefer-Wolfowitz) and root-finding/stochastic gradient-based (Robbins-Monro) settings, and is based on the "simultaneous perturbation (SP)" idea introduced previously: The algorithm requires only a small number of loss function or gradient measurements per iteration-independent of the problem dimension-to adaptively estimate the Hessian and parameters of primary interest. Aside from introducing the adaptive SP approach, this paper presents practical implementation guidance, asymptotic theory, and a nontrivial numerical evaluation. Also included is a discussion and numerical analysis comparing the adaptive SP approach with the iterate-averaging approach to accelerated SA.
引用
收藏
页码:1839 / 1853
页数:15
相关论文
共 50 条