Redistribution Layer Defect Classification Using Computer Vision Techniques And Machine Learning

被引:1
|
作者
Dangayach, Sachin [1 ]
Lianto, Prayudi [2 ]
Mishra, Satwik Swarup [1 ]
机构
[1] Appl Mat Inc, Data Sci, Global Informat Serv, Bangalore, Karnataka, India
[2] Appl Mat Inc, Adv Packaging Dev Ctr, 10 Sci Pk Rd, Singapore, Singapore
关键词
image processing; machine learning; data analytics; advanced metrology; defect binning; RDL;
D O I
10.1109/EPTC50525.2020.9315117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the semiconductor industry, defects are yield killers and the detection/classification of which can be expensive as well as time consuming. To overcome this challenge, we propose a solution involving Computer Vision Techniques and Machine Learning to accomplish defect binning procedure in typical wafer-level packaging scenario, focusing on 2um L/S redistribution layer (RDL) features. With this approach, inspection cycle time is reduced, thereby driving faster product development.
引用
收藏
页码:237 / 241
页数:5
相关论文
共 50 条
  • [31] Performance analysis of machine learning algorithm of detection and classification of brain tumor using computer vision
    Shinde, Ashwini S.
    Mahendra, B. M.
    Nejakar, Santosh
    Herur, Santosh M.
    Bhat, Nagaraj
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [32] Computer Vision with Machine Learning Enabled Skin Lesion Classification Model
    Mansour, Romany F.
    Althubiti, Sara A.
    Alenezi, Fayadh
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 849 - 864
  • [33] Software defect identification using machine learning techniques
    Ceylan, Evren
    Kudubay, F. Onur
    Bener, Ayse B.
    [J]. 32ND EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS (SEAA) - PROCEEDINGS, 2006, : 240 - +
  • [34] Classification and monitoring of urbanized areas using computer vision techniques
    Tetila, Everton Castelao
    de Moraes, Paula Martin
    Constantino, Michel
    da Costa, Reginaldo Brito
    Ayres, Fabio Martins
    Reynaldo, Gabriela Oshiro
    Colman, Neire Aparecida
    Albuquerque Palhares Machado, Flavia Cristina
    Soares, Karen Giuliano
    Dib Mereb Greco, Maria Madalena
    Pistori, Hemerson
    [J]. DESENVOLVIMENTO E MEIO AMBIENTE, 2023, 61 : 32 - 42
  • [35] Automatic Classification of Chickpea Varieties Using Computer Vision Techniques
    Pourdarbani, Razieh
    Sabzi, Sajad
    Manuel Garcia-Amicis, Victor
    Garcia-Mateos, Gines
    Miguel Molina-Martinez, Jose
    Ruiz-Canales, Antonio
    [J]. AGRONOMY-BASEL, 2019, 9 (11):
  • [36] Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review
    Rasheed, Aqsa
    Zafar, Bushra
    Rasheed, Amina
    Ali, Nouman
    Sajid, Muhammad
    Dar, Saadat Hanif
    Habib, Usman
    Shehryar, Tehmina
    Mahmood, Muhammad Tariq
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [37] Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review
    Rasheed, Aqsa
    Zafar, Bushra
    Rasheed, Amina
    Ali, Nouman
    Sajid, Muhammad
    Dar, Saadat Hanif
    Habib, Usman
    Shehryar, Tehmina
    Mahmood, Muhammad Tariq
    [J]. Mathematical Problems in Engineering, 2020, 2020
  • [38] Drought Stress Detection Using Low-Cost Computer Vision Systems and Machine Learning Techniques
    Ramos-Giraldo, Paula
    Reberg-Horton, Chris
    Locke, Anna M.
    Mirsky, Steven
    Lobaton, Edgar
    [J]. IT PROFESSIONAL, 2020, 22 (03) : 27 - 29
  • [39] Designing an Efficient Framework for Violence Detection in Sensitive Areas using Computer Vision and Machine Learning Techniques
    Singh, Kuldeop
    Preethi, K. Yamini
    Sai, K. Vineeth
    Modi, Chiral N.
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2018, : 74 - 79
  • [40] Intelligent Instrument Reader Using Computer Vision and Machine Learning
    Sowah, Robert A.
    Ofoli, Abdul R.
    Mensah-Ananoo, Eugene
    Mills, Godfrey A.
    Koumadi, Koudjo M.
    [J]. 2018 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2018,