Enhancements in Functionality of the Interactive Visual Explorer for ATLAS Computing Metadata

被引:0
|
作者
Grigorieva, M. A. [1 ,2 ]
Alekseev, A. A. [3 ]
Artamonov, A. A. [4 ]
Galkin, T. P. [4 ]
Grin, D., V [6 ]
Korchuganova, T. A. [3 ]
Padolski, S., V [5 ]
Titov, M. A. [1 ]
Klimentov, A. A. [5 ]
机构
[1] Lomonosov Moscow State Univ, Leninskie Gory 1,Bldg 4, Moscow 119234, Russia
[2] Moscow Ctr Fundamental & Appl Math, GSP 1,Leninskie Gory, Moscow 119991, Russia
[3] Ivannikov Inst Syst Programming, Alexander Solzhenitsyn St 25, Moscow 109004, Russia
[4] Natl Res Nucl Univ MEPhI, Kashirskoe Shosse 31, Moscow 115409, Russia
[5] Brookhaven Natl Lab, Upton, NY 11973 USA
[6] Kurchatov Inst, Natl Res Ctr, Akad Kurchatova Pl 1, Moscow 123182, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1051/epjconf/202024505032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The development of the Interactive Visual Explorer (InVEx), a visual analytics tool for the computing metadata of the ATLAS experiment at LHC, includes research of various approaches for data handling both on server and client sides. InVEx is implemented as a web-based application which aims at the enhancing of analytical and visualization capabilities of the existing monitoring tools and facilitates the process of data analysis with the interactivity and human supervision. The current work is focused on the architecture enhancements of the InVEx application. First, we will describe the user-manageable data preparation stage for cluster analysis. Then, the Level-of-Detail approach for the interactive visual analysis will be presented. It starts with the low detailing, when all data records are grouped (by clustering algorithms or by categories) and aggregated. We provide users with means to look deeply into this data, incrementally increasing the level of detail. Finally, we demonstrate the development of data storage backend for InVEx, which is adapted for the Level-of-Detail method to keep all stages of data derivation sequence.
引用
收藏
页数:6
相关论文
共 22 条
  • [11] Visual Omics Explorer (VOE): a cross-platform portal for interactive data visualization
    Kim, Baekdoo
    Ali, Thahmina
    Hosmer, Samuel
    Krampis, Konstantinos
    BIOINFORMATICS, 2016, 32 (13) : 2050 - 2052
  • [12] MS Pattern Explorer: interactive visual exploration of temporal activity patterns for multiple sclerosis
    Morgenshtern, Gabriela
    Rutishauser, Yves
    Haag, Christina
    von Wyl, Viktor
    Bernard, Jurgen
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024,
  • [13] Cistrome Explorer: an interactive visual analysis tool for large-scale epigenomic data
    L'Yi, Sehi
    Keller, Mark S.
    Dandawate, Ariaki
    Taing, Len
    Chen, Chen-Hao
    Brown, Myles
    Meyer, Clifford A.
    Gehlenborg, Nils
    BIOINFORMATICS, 2023, 39 (02)
  • [14] Ecosound-Explorer: A Method for Large Scale Interactive Visual Navigation of Environmental Acoustic Data
    Rowe, Benjamin
    Zhang, Jinglan
    Towsey, Michael
    Roe, Paul
    Brereton, Margot
    PROCEEDINGS OF THE 30TH AUSTRALIAN COMPUTER-HUMAN INTERACTION CONFERENCE (OZCHI 2018), 2018, : 539 - 543
  • [15] Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making
    Hoque, Md Naimul
    Mueller, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4728 - 4740
  • [16] Multi-modal Text Recognition Networks: Interactive Enhancements Between Visual and Semantic Features
    Na, Byeonghu
    Kim, Yoonsik
    Park, Sungrae
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 446 - 463
  • [17] An interactive visual computing tool for multi-dimensional scientific analysis
    Zuzolo, PA
    Hoffert, SG
    Powell, AM
    17TH INTERNATIONAL CONFERENCE ON INTERACTIVE INFORMATION AND PROCESSING SYSTEMS (IIPS) FOR METEOROLOGY, OCEANOGRAPHY, AND HYDROLOGY, 2001, : 352 - 355
  • [18] GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria
    Xiang, Hua
    Connolly, James A. D.
    JOURNAL OF METAMORPHIC GEOLOGY, 2022, 40 (02) : 243 - 255
  • [19] CloudDet: Interactive Visual Analysis of Anomalous Performances in Cloud Computing Systems
    Xu, Ke
    Wang, Yun
    Yang, Leni
    Wang, Yifang
    Qiao, Bo
    Qin, Si
    Xu, Yong
    Zhang, Haidong
    Qu, Huamin
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 1107 - 1117
  • [20] Dynamic, interactive and visual analysis of population distribution and mobility dynamics in an urban environment using the mobility explorer framework
    Peters-Anders J.
    Khan Z.
    Loibl W.
    Augustin H.
    Breinbauer A.
    Information (Switzerland), 2017, 8 (02)