Large contribution to secondary organic aerosol from isoprene cloud chemistry

被引:28
|
作者
Lamkaddam, Houssni [1 ]
Dommen, Josef [1 ]
Ranjithkumar, Ananth [2 ]
Gordon, Hamish [3 ]
Wehrle, Gunther [1 ]
Krechmer, Jordan [4 ]
Majluf, Francesca [4 ]
Salionov, Daniil [5 ]
Schmale, Julia [1 ,6 ]
Bjelic, Sasa [5 ]
Carslaw, Kenneth S. [2 ]
El Haddad, Imad [1 ]
Baltensperger, Urs [1 ]
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
[2] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[3] Carnegie Mellon Univ, Engn Res Accelerator, Pittsburgh, PA 15213 USA
[4] Aerodyne Res Inc, Billerica, MA 01821 USA
[5] Paul Scherrer Inst, Bioenergy & Catalysis Lab, CH-5232 Villigen, Switzerland
[6] Ecole Polytech Fed Lausanne, Sch Architecture Civil & Environm Engn, Lausanne, Switzerland
来源
SCIENCE ADVANCES | 2021年 / 7卷 / 13期
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
D O I
10.1126/sciadv.abe2952
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Suppression of anthropogenic secondary organic aerosol formation by isoprene
    Kangwei Li
    Xin Zhang
    Bin Zhao
    William J. Bloss
    Chao Lin
    Stephen White
    Hai Yu
    Linghong Chen
    Chunmei Geng
    Wen Yang
    Merched Azzi
    Christian George
    Zhipeng Bai
    [J]. npj Climate and Atmospheric Science, 5
  • [22] Suppression of anthropogenic secondary organic aerosol formation by isoprene
    Li, Kangwei
    Zhang, Xin
    Zhao, Bin
    Bloss, William J.
    Lin, Chao
    White, Stephen
    Yu, Hai
    Chen, Linghong
    Geng, Chunmei
    Yang, Wen
    Azzi, Merched
    George, Christian
    Bai, Zhipeng
    [J]. NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2022, 5 (01)
  • [23] Contribution of Isoprene Epoxydiol to Urban Organic Aerosol: Evidence from Modeling and Measurements
    Karambelas, Alexandra
    Pye, Havala O. T.
    Budisulistiorini, Sri H.
    Surratt, Jason D.
    Pinder, Robert W.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2014, 1 (06): : 278 - 283
  • [24] Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol
    Riva, Matthieu
    Budisulistiorini, Sri Hapsari
    Zhang, Zhenfa
    Gold, Avram
    Surratt, Jason D.
    [J]. ATMOSPHERIC ENVIRONMENT, 2016, 130 : 5 - 13
  • [25] Mechanism of secondary organic aerosol formation from the reaction of isoprene with sulfoxy radicals
    Wen Liu
    Guochun Lv
    Chenxi Zhang
    Xiaomin Sun
    [J]. Environmental Science and Pollution Research, 2021, 28 : 42562 - 42569
  • [26] Mass spectrometric characterization of organosulfates related to secondary organic aerosol from isoprene
    Shalamzari, Mohammad Safi
    Ryabtsova, Oxana
    Kahnt, Ariane
    Vermeylen, Reinhilde
    Herent, Marie-France
    Quetin-Leclercq, Joelle
    Van der Veken, Pieter
    Maenhaut, Willy
    Claeys, Magda
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2013, 27 (07) : 784 - 794
  • [27] Secondary organic aerosol formation from photooxidation of a mixture of dimethyl sulfide and isoprene
    Chen, Tianyi
    Jang, Myoseon
    [J]. ATMOSPHERIC ENVIRONMENT, 2012, 46 : 271 - 278
  • [28] Different roles of water in secondary organic aerosol formation from toluene and isoprene
    Jia, Long
    Xu, YongFu
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (11) : 8137 - 8154
  • [29] Mechanism of secondary organic aerosol formation from the reaction of isoprene with sulfoxy radicals
    Liu, Wen
    Lv, Guochun
    Zhang, Chenxi
    Sun, Xiaomin
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (31) : 42562 - 42569
  • [30] Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing
    Bryant, Daniel J.
    Dixon, William J.
    Hopkins, James R.
    Dunmore, Rachel E.
    Pereira, Kelly
    Shaw, Marvin
    Squires, Freya A.
    Bannan, Thomas J.
    Mehra, Archit
    Worrall, Stephen D.
    Bacak, Asan
    Coe, Hugh
    Percival, Carl J.
    Whalley, Lisa K.
    Heard, Dwayne E.
    Slater, Eloise J.
    Ouyang, Bin
    Cui, Tianqu
    Surratt, Jason D.
    Liu, Di
    Shi, Zongbo
    Harrison, Roy
    Sun, Yele
    Xu, Weiqi
    Lewis, Alastair C.
    Lee, James D.
    Rickard, Andrew R.
    Hamilton, Jacqueline F.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (12) : 7531 - 7552