Riemannian geometry of conical singular sets

被引:4
|
作者
Liu, ZD
Shen, ZM
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Indiana Univ Purdue Univ, Dept Math, Indianapolis, IN 46202 USA
关键词
bounded curvature; conical singular set; Gauss-Bonnet-Chern formula; second fundamental tensor; singular Riemannian metric;
D O I
10.1023/A:1006597812394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a class of singular Riemannian manifolds. The singular set itself is a smooth manifold with a cone-like neighborhood. By imposing a reasonable convergence condition on the metric, we can determine the local geometrical structure near the singular set. In general, the curvature near the singular set is unbounded. We prove that a bounded curvature assumption would have a strong implication on the geometrical and topological structures near the singular set. We also establish the Gauss-Bonnet-Chem formula, which can be applied to the study of singular Eistein 4-manifolds.
引用
收藏
页码:29 / 62
页数:34
相关论文
共 50 条
  • [41] ON THE REGULARITY OF SETS IN RIEMANNIAN MANIFOLDS
    SEPAHVAND, A.
    BARANI, A.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 386 - 405
  • [42] Riemannian geometry of noncommutative surfaces
    Chaichian, M.
    Tureanu, A.
    Zhang, R. B.
    Zhang, Xiao
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [43] A panoramic view of riemannian geometry
    Nigel Hitchin
    [J]. The Mathematical Intelligencer, 2006, 28 (2) : 73 - 74
  • [44] Needle Decompositions in Riemannian Geometry
    Klartag, Bo'az
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 249 (1180) : I - 77
  • [45] Parallelism and equidistance in Riemannian geometry
    Peters, RM
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 103 - 111
  • [46] On the area distance and the Riemannian geometry
    Palle, D
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2000, 115 (04): : 375 - 378
  • [47] Riemannian foliations of bounded geometry
    Alvarez Lopez, Jesus A.
    Kordyukov, Yuri A.
    Leichtnam, Eric
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1589 - 1608
  • [48] Riemannian manifolds in noncommutative geometry
    Lord, Steven
    Rennie, Adam
    Varilly, Joseph C.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (07) : 1611 - 1638
  • [49] GLOBAL THEOREMS IN RIEMANNIAN GEOMETRY
    ALLENDOERFER, CB
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (03) : 249 - 259
  • [50] A panoramic view of Riemannian geometry
    Giblin, Peter
    [J]. MATHEMATICAL GAZETTE, 2005, 89 (514): : 162 - 163