Large-scale video copy retrieval with temporal-concentration SIFT

被引:33
|
作者
Zhu, Yingying [1 ]
Huang, Xiaoyan [2 ]
Huang, Qiang [1 ]
Tian, Qi [3 ]
机构
[1] Shenzhen Univ, Sch Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Co Ltd, Oracle Res & Dev Ctr, Shenzhen 518057, Peoples R China
[3] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Video copy retrieval; SIFT; Spatio-temporal features; Frame validation; IMAGE; FRAMEWORK;
D O I
10.1016/j.neucom.2015.09.114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The scale-invariant feature transform (SIFT) feature plays a very important role in multimedia content analysis, such as near-duplicate image and video retrieval. However, the storage and query costs of SIFT become unbearable for large-scale databases. In this paper, SIFT features are robustly encoded with temporal information by tracking the SIFT to generate temporal-concentration SIFT (TCSIFT), which highly compresses the quantity of local features to reduce visual redundancy, and keeps the advantages of SIFT as much as possible at the same time. On the basis of TCSIFT, a novel framework for large-scale video copy retrieval is proposed in which the processes of retrieval and validation are implemented at the feature and frame level. Experimental results for two different datasets, i.e., CC_WEB_VIDEO and TRECVID, demonstrate that our method can yield comparable accuracy, compact storage size, and more efficient execution time, as well as adapt to various video transformations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [31] Efficient indexing and retrieval of large-scale geo-tagged video databases
    Ying Lu
    Cyrus Shahabi
    Seon Ho Kim
    GeoInformatica, 2016, 20 : 829 - 857
  • [32] Large-Scale Near-Duplicate Web Video Retrieval: Challenges and Approaches
    Cai, Yang
    Yang, Linjun
    IEEE MULTIMEDIA, 2013, 20 (02) : 42 - 51
  • [33] Stochastic Multiview Hashing for Large-Scale Near-Duplicate Video Retrieval
    Hao, Yanbin
    Mu, Tingting
    Hong, Richang
    Wang, Meng
    An, Ning
    Goulermas, John Y.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (01) : 1 - 14
  • [34] π-Hub: Large-scale video learning, storage, and retrieval on heterogeneous hardware platforms
    Tang, Jie
    Liu, Shaoshan
    Cao, Jie
    Sun, Dawei
    Ding, Bolin
    Gaudiot, Jean-Luc
    Shi, Weisong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 514 - 523
  • [35] Efficient indexing and retrieval of large-scale geo-tagged video databases
    Lu, Ying
    Shahabi, Cyrus
    Kim, Seon Ho
    GEOINFORMATICA, 2016, 20 (04) : 829 - 857
  • [36] Learning Segment Similarity and Alignment in Large-Scale Content Based Video Retrieval
    Jiang, Chen
    Huang, Kaiming
    He, Sifeng
    Yang, Xudong
    Zhang, Wei
    Zhang, Xiaobo
    Cheng, Yuan
    Yang, Lei
    Wang, Qing
    Xu, Furong
    Pan, Tan
    Chu, Wei
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1618 - 1626
  • [37] Real-Time Video Copy-Location Detection in Large-Scale Repositories
    Liu, Bo
    Li, Zhu
    Yang, Linjun
    Wang, Meng
    Tian, Xinmei
    IEEE MULTIMEDIA, 2011, 18 (03) : 22 - 31
  • [38] Polyethylene dispensers generate large-scale temporal fluctuations in pheromone concentration
    Karg, G
    Suckling, DM
    ENVIRONMENTAL ENTOMOLOGY, 1997, 26 (04) : 896 - 905
  • [39] Large-Scale Image Retrieval with Elasticsearch
    Amato, Giuseppe
    Bolettieri, Paolo
    Carrara, Fabio
    Falchi, Fabrizio
    Gennaro, Claudio
    ACM/SIGIR PROCEEDINGS 2018, 2018, : 925 - 928
  • [40] Large-Scale Multimedia Retrieval and Mining
    Yan, Rong
    Huet, Benoit
    Sukthankar, Rahul
    IEEE MULTIMEDIA, 2011, 18 (01) : 11 - 13