Large-scale video copy retrieval with temporal-concentration SIFT

被引:33
|
作者
Zhu, Yingying [1 ]
Huang, Xiaoyan [2 ]
Huang, Qiang [1 ]
Tian, Qi [3 ]
机构
[1] Shenzhen Univ, Sch Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Co Ltd, Oracle Res & Dev Ctr, Shenzhen 518057, Peoples R China
[3] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Video copy retrieval; SIFT; Spatio-temporal features; Frame validation; IMAGE; FRAMEWORK;
D O I
10.1016/j.neucom.2015.09.114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The scale-invariant feature transform (SIFT) feature plays a very important role in multimedia content analysis, such as near-duplicate image and video retrieval. However, the storage and query costs of SIFT become unbearable for large-scale databases. In this paper, SIFT features are robustly encoded with temporal information by tracking the SIFT to generate temporal-concentration SIFT (TCSIFT), which highly compresses the quantity of local features to reduce visual redundancy, and keeps the advantages of SIFT as much as possible at the same time. On the basis of TCSIFT, a novel framework for large-scale video copy retrieval is proposed in which the processes of retrieval and validation are implemented at the feature and frame level. Experimental results for two different datasets, i.e., CC_WEB_VIDEO and TRECVID, demonstrate that our method can yield comparable accuracy, compact storage size, and more efficient execution time, as well as adapt to various video transformations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [1] TEMPORAL AGGREGATION FOR LARGE-SCALE QUERY-BY-IMAGE VIDEO RETRIEVAL
    Araujo, Andre
    Chaves, Jason
    Angst, Roland
    Girod, Bernd
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1518 - 1522
  • [2] Temporal Aggregation of Visual Features for Large-Scale Image-to-Video Retrieval
    Garcia, Noa
    [J]. ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 489 - 492
  • [3] Face Retrieval on Large-Scale Video Data
    Herrmann, Christian
    Beyerer, Juergen
    [J]. 2015 12TH CONFERENCE ON COMPUTER AND ROBOT VISION CRV 2015, 2015, : 192 - 199
  • [4] Face Retrieval in Large-Scale News Video Datasets
    Thanh Duc Ngo
    Hung Thanh Vu
    Duy-Dinh Le
    Satoh, Shin'ichi
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (08): : 1811 - 1825
  • [5] Large-Scale Video Retrieval Using Image Queries
    Araujo, Andre
    Girod, Bernd
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (06) : 1406 - 1420
  • [6] DLSTM Approach to Video Modeling with Hashing for Large-Scale Video Retrieval
    Zhuang, Naifan
    Ye, Jun
    Hua, Kien A.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3222 - 3227
  • [7] Audio-visual large-scale video copy detection
    Liu, Yang
    Xu, Changsheng
    Lu, Hanqing
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (18) : 3803 - 3816
  • [8] Attention-Based Video Hashing for Large-Scale Video Retrieval
    Wang, Yingxin
    Nie, Xiushan
    Shi, Yang
    Zhou, Xin
    Yin, Yilong
    [J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (03) : 491 - 502
  • [9] A Large-scale TV Dataset for Partial Video Copy Detection
    Van-Hao Le
    Delalandre, Mathieu
    Conte, Donatello
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 388 - 399
  • [10] Temporal Binary Coding for Large-Scale Video Search
    Xia, Ke
    Ma, Yuqing
    Liu, Xianglong
    Mu, Yadong
    Liu, Li
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 333 - 341