Effect of defect size and shape on the high-cycle fatigue behavior

被引:33
|
作者
Guerchais, R. [1 ]
Morel, F. [1 ]
Saintier, N. [2 ]
机构
[1] Arts & Metiers ParisTech, LAMPA, 2 Bd Ronceray, F-49035 Angers, France
[2] Univ Bordeaux 1, Arts & Metiers ParisTech, Esplanade Arts & Metiers, UMR CNRS 5295,I2M, F-33405 Talence, France
关键词
High-cycle fatigue; Elliptical notch; Crystal plasticity; Micromechanics; Fatigue criteria; STRENGTH; LIMIT; METALS;
D O I
10.1016/j.ijfatigue.2016.12.010
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study aims to examine the effects of both material microstructure and voids on the high-cycle fatigue behavior of metals. To deal with this matter, finite element analyses of polycrystalline aggregates are carried out, for different configurations of crystalline orientations, in order to estimate the niechanical state, at the grain scale, in the vicinity of a small elliptical hole. Fatigue criteria are then applied to estimate the average fatigue limit in fully reversed tension, for different defect sizes and ellipse aspect ratios. The constitutive models and the fatigue criteria are calibrated using experimental data obtained from specimens made of 316L austenitic steel. The estimations are then compared with the experimental trends. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:530 / 539
页数:10
相关论文
共 50 条
  • [11] High-cycle fatigue and crack initiation behavior of 7449 alloy
    Zhong, Shen
    Zheng, Zi-Qiao
    Zhong, Li-Ping
    Li, Hong-Ping
    Wu, Qiu-Ping
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2012, 22 (10): : 2734 - 2742
  • [12] Low- and High-Cycle Fatigue Behavior of FRCM Composites
    Calabrese, Angelo Savio
    D'Antino, Tommaso
    Colombi, Pierluigi
    Poggi, Carlo
    MATERIALS, 2021, 14 (18)
  • [13] High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels
    Weijun HUI~(1
    JournalofMaterialsScience&Technology, 2008, (05) : 787 - 792
  • [14] High-cycle fatigue fracture behavior of ultrahigh strength steels
    State Key Laboratory of Advanced Steel Processing and Products, Beijing 100081, China
    不详
    不详
    不详
    J Mater Sci Technol, 2008, 5 (787-792):
  • [15] High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels
    Hui, Weijun
    Nie, Yihong
    Dong, Han
    Weng, Yuqing
    Wang, Chunxu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2008, 24 (05) : 787 - 792
  • [16] Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu
    Jing, Lijun
    Pan, Qingsong
    Long, Jianzhou
    Tao, Nairong
    Lu, Lei
    SCRIPTA MATERIALIA, 2019, 161 : 74 - 77
  • [17] Effects of specimen size on fatigue life of metallic materials in high-cycle and very-high-cycle fatigue regimes
    Sun, C.
    Zhang, X.
    Liu, X.
    Hong, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2016, 39 (06) : 770 - 779
  • [18] High-cycle fatigue behavior of IN 738LC superalloy at high temperatures
    Hornik, Vit
    Baca, Adrian
    Smid, Miroslav
    Hrbacek, Karel
    Hutar, Pavel
    10TH INTERNATIONAL CONFERENCE ON MATERIALS STRUCTURE AND MICROMECHANICS OF FRACTURE, MSMF, 2023, 43 : 136 - 141
  • [19] High-cycle fatigue behavior of high-nitrogen austenitic stainless steel
    Dai, Qixun
    Yuan, Zhizhong
    Chen, Xi
    Chen, Kangmin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 517 (1-2): : 257 - 260
  • [20] A Predictive Methodology for High-Cycle Fatigue Behavior of Machined Metallic Parts
    Laamouri, Adnen
    Sidhom, Habib
    Braham, Chedly
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (06) : 4776 - 4794