CO2 uptake prediction of metal-organic frameworks using quasi-SMILES and Monte Carlo optimization

被引:8
|
作者
Ahmadi, Shahin [1 ]
Ketabi, Sepideh [1 ]
Qomi, Mahnaz [2 ,3 ]
机构
[1] Islamic Azad Univ, Fac Pharmaceut Chem, Dept Chem, Tehran Med Sci, Tehran, Iran
[2] Islamic Azad Univ, Fac Pharm, Dept Med Chem, Tehran Med Sci, Tehran, Iran
[3] Islamic Azad Univ, Tehran Med Sci, Act Pharmaceut Ingredients Res APIRC, Tehran, Iran
关键词
POST-SYNTHETIC MODIFICATION; CARBON-DIOXIDE CAPTURE; ADSORPTION PROPERTIES; ACTIVATED CARBON; GAS-ADSORPTION; CELL VIABILITY; POROUS MOF; HUMAN LUNG; FLUE-GAS; STORAGE;
D O I
10.1039/d2nj00596d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) are organic-inorganic hybrid crystalline porous materials with high specific surface areas that have revolutionized materials science and adsorbent development. The research aims to investigate and develop QSPR (quantitative structure-property relationship) analysis of MOFs that applies the quasi-SMILES parameters such as BET (Brunauer, Emmett and Teller) specific surface area and pore volume, pressure, and temperature for CO2 uptake prediction of MOFs for the first time. The total data set, including 260 quasi-SMILES features of MOFs, were randomly split into training, validation, and test sets thrice. Here, six QSPR models have been constructed using two target functions based on quasi-SMILES descriptors. The significance of different eclectic descriptors of CO2 increase and decrease uptake capacity of MOFs is presented. Mechanistic interpretation of the effective descriptors for the model is also offered. Based on the model interpretation results, adding basic N- and O-containing, and double-bond containing functional groups to the surfaces of organic linkers of MOFs plays a significant role in improving CO2 uptake properties. The satisfactory statistical quality of the three proposed models based on TF2 shows that the generated models can be efficient for predicting the CO2 capture capacity of MOFs.
引用
收藏
页码:8827 / 8837
页数:11
相关论文
共 50 条
  • [21] Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction
    Chen, Yi
    Wang, Dengke
    Deng, Xiaoyu
    Li, Zhaohui
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (21) : 4893 - 4904
  • [22] Computational screening of metal-organic frameworks for CO2 separation
    Jiang, Jianwen
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 57 - 64
  • [23] Computational study of CO2 storage in metal-organic frameworks
    Yang, Qingyuan
    Zhong, Chongli
    Chen, Jian-Feng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05): : 1562 - 1569
  • [24] New Metal-Organic Frameworks for Chemical Fixation of CO2
    Nguyen, Phuong T. K.
    Nguyen, Huong T. D.
    Nguyen, Hung N.
    Trickett, Christopher A.
    Ton, Quang T.
    Gutierrez-Puebla, Enrique
    Angeles Monge, M.
    Cordova, Kyle E.
    Gandara, Felipe
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) : 733 - 744
  • [25] Designing metal-organic frameworks for trace CO2 capture
    Wade, Casey
    Bien, Caitlin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [26] Solvent Impedes CO2 Cycloaddition on Metal-Organic Frameworks
    Shao, Dan
    Shi, Jinbiao
    Zhang, Jianling
    Tan, Xiuniang
    Luo, Tian
    Cheng, Xiuyan
    Zhang, Bingxing
    Han, Buxing
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (04) : 386 - 389
  • [27] Molecular modeling of metal-organic frameworks for CO2 capture
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [28] Synthesis strategies of metal-organic frameworks for CO2 2 capture
    Sun, Meng
    Wang, Xiaokang
    Gao, Fei
    Xu, Mingming
    Fan, Weidong
    Xu, Ben
    Sun, Daofeng
    MICROSTRUCTURES, 2023, 3 (04):
  • [29] Using Supercritical CO2 in the Preparation of Metal-Organic Frameworks: Investigating Effects on Crystallisation
    Doan, Huan, V
    Cheng, Fei
    Dyirakumunda, Thandeka
    Elsegood, Mark R. J.
    Chin, Jiamin
    Rowe, Oliver
    Redshaw, Carl
    Ting, Valeska P.
    CRYSTALS, 2020, 10 (01):
  • [30] Computational and Machine Learning Methods for CO2 Capture Using Metal-Organic Frameworks
    Mashhadimoslem, Hossein
    Abdol, Mohammad Ali
    Karimi, Peyman
    Zanganeh, Kourosh
    Shafeen, Ahmed
    Elkamel, Ali
    Kamkar, Milad
    ACS NANO, 2024, 18 (35) : 23842 - 23875