Loads and motions for a spar-supported floating offshore wind turbine

被引:3
|
作者
Sultania, Abhinav [1 ]
Manuel, Lance [1 ]
机构
[1] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
spar platform; offshore wind energy; loads; stochastic simulation;
D O I
10.12989/was.2016.22.5.525
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An offshore wind turbine supported by a spar buoy floating platform is the subject of this study on tower and rotor extreme loads. The platform, with a 120-meter draft and assumed to be sited in 320 meters of water, supports a 5 MW wind turbine. A baseline model for this turbine developed at the National Renewable Energy Laboratory (NREL) is employed in stochastic response simulations. The support platform, along with the mooring system consisting of three catenary lines, chosen for loads modeling, is based on the "Hywind" floating wind turbine concept. Our interest lies in gaining an understanding of the dynamic coupling between the support platform motion and the turbine loads. We first investigate short-term response statistics using stochastic simulation for a range of different environmental wind and wave conditions. From this study, we identify a few "controlling" environmental conditions for which long-term turbine load statistics and probability distributions are established.
引用
收藏
页码:525 / 541
页数:17
相关论文
共 50 条
  • [21] Predicting Short Term Extreme Response of Spar Offshore Floating Wind Turbine
    Aggarwal, Neeraj
    Manikandan, R.
    Saha, Nilanjan
    8TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS (APAC 2015), 2015, 116 : 47 - 55
  • [22] Dynamic Analysis of the Mooring System for a Floating Offshore Wind Turbine Spar Platform
    Zhang, D. P.
    Zhu, K. Q.
    Jing, B.
    Yang, R. Z.
    Tang, Z. C.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 796 - 799
  • [23] DYNAMIC RESPONSES OF A SPAR TYPE FLOATING OFFSHORE WIND TURBINE WITH FAILED MOORINGS
    Ren, Yajun
    Venugopal, Vengatesan
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 9, 2020,
  • [24] Flexible dynamic analysis of an offshore wind turbine installed on a floating spar platform
    Zhu, Xiangqian
    Yoo, Wan-Suk
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (06):
  • [25] Study on the Dynamic Characteristic for Spar type Floating Foundation of Offshore Wind Turbine
    Zhang, Ruoyu
    Chen, Chaohe
    Tang, Yougang
    PROGRESS IN CIVIL ENGINEERING, PTS 1-4, 2012, 170-173 : 2316 - +
  • [26] MODEL TESTS OF A SPAR-TYPE FLOATING WIND TURBINE UNDER WIND/WAVE LOADS
    Duan, Fei
    Hu, Zhiqiang
    Wang, Jin
    PROCEEDINGS OF THE ASME 34TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2015, VOL 9, 2015,
  • [27] Feasibility Study of Offshore Triceratops-Supported Floating Offshore Wind Turbine
    Srinivasan C.
    Serino G.
    Chauhan Y.J.
    Sanghvi C.
    Gohil A.
    Journal of The Institution of Engineers (India): Series A, 2024, 105 (02) : 295 - 305
  • [28] Experimental Investigation On Mooring Loads And Motions Of A TLP Floating Wind Turbine
    Mazarakos, Thomas P.
    Mavrakos, Spyridon A.
    2017 TWELFTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2017,
  • [29] A Novel Dynamics Analysis Method for Spar-Type Floating Offshore Wind Turbine
    Xin-liang Tian
    Jia-ren Xiao
    Hao-xue Liu
    Bin-rong Wen
    Zhi-ke Peng
    China Ocean Engineering, 2020, 34 : 99 - 109
  • [30] Analysis on environmental loads and motion performance of floating offshore wind turbine
    Ye, X. (yexiaorong@hrbeu.edu.cn), 1600, Science Press (34):