Riesz potential estimates for problems with Orlicz growth

被引:1
|
作者
Xiong, Qi [1 ]
Zhang, Zhenqiu [1 ,2 ]
Ma, Lingwei [3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Riesz potential estimate; Orlicz growth conditions; Dini-BMO coefficients; Measure data; LINEAR ELLIPTIC-EQUATIONS; GRADIENT; REGULARITY;
D O I
10.1016/j.jmaa.2022.126448
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the solutions of the non-homogeneous quasilinear elliptic equations with Dini-BMO coefficients involving measure data. At first, we prove pointwise gradient estimates for solutions by Riesz potentials; as a consequence, we obtain the borderline gradient regularity and extend a classical theorem of Stein for Poisson equations. Then we establish oscillation estimates of solutions via Riesz potentials, and these yield Holder continuity of solutions. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:38
相关论文
共 50 条