Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4

被引:530
|
作者
Persson, Clas [1 ]
机构
[1] Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
AUGMENTED-WAVE METHOD; FILM SOLAR-CELLS; THIN-FILMS; WURTZITE INN; CHALCOGENIDES; ENERGY; MASSES;
D O I
10.1063/1.3318468
中图分类号
O59 [应用物理学];
学科分类号
摘要
The electronic structure as well as the optical response of kesterite and stannite structures of Cu2ZnSnS4 and Cu2ZnSnSe4 are analyzed by a relativistic full-potential linearized augmented plane wave method. The energy dispersion of the conduction-band edge reveals larger effective electron mass of the two Cu2ZnSnS4 compounds (m(c1)approximate to 0.18m(0)) compared with Cu2ZnSnSe4 (m(c1)approximate to 0.07m(0)). Whereas the effective electron mass tensor is fairly isotropic, the effective hole masses show strong anisotropy. The fundamental band-gap energy is estimated to be E-g approximate to 1.5 eV for Cu2ZnSnS4 and E-g approximate to 1.0 eV for Cu2ZnSnSe4. The larger band gap results in a smaller high-frequency dielectric constant: epsilon(infinity)approximate to 6.7 for Cu2ZnSnS4 whereas epsilon(infinity)approximate to 8.6 for Cu2ZnSnSe4. The characteristic anisotropy of the dielectric function epsilon(omega) in the stannite compounds allows for a complementary identification of the crystalline structure type. Overall, however, all four compounds show similar atomic-resolved density-of-states, dielectric function, and optical absorption coefficient alpha(omega). (C) 2010 American Institute of Physics. [doi:10.1063/1.3318468]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A COMPARABLE STUDY ON STRUCTURAL AND OPTICAL PROPERTIES OF Cu2ZnSnS4 AND Cu2ZnSnSe4 NANOCRYSTALLINES
    Gu, Xiuquan
    Zhang, Shuang
    Zhao, Yulong
    Zhu, Lei
    Qiang, Yinghuai
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (04):
  • [2] Influence of Cu2S, SnS and Cu2ZnSnSe4 on optical properties of Cu2ZnSnS4
    Mamedov, D.
    Klopov, M.
    Karazhanov, S. Zh.
    MATERIALS LETTERS, 2017, 202 : 70 - 72
  • [3] Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell
    Li, Z. Q.
    Shi, J. H.
    Liu, Q. Q.
    Chen, Y. W.
    Sun, Z.
    Yang, Z.
    Huang, S. M.
    NANOTECHNOLOGY, 2011, 22 (26)
  • [4] Structural, Electronic and Optical Properties in Earth-Abundant Photovoltaic Absorber of Cu2ZnSnS4 and Cu2ZnSnSe4 from DFT calculations
    Reshak, A. H.
    Nouneh, K.
    Kityk, I. V.
    Bila, Jiri
    Auluck, S.
    Kamarudin, H.
    Sekkat, Z.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (02): : 955 - 974
  • [5] Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSnSe4-xSx nanofibers
    Gonce, Mehmet K.
    Dogru, Melike
    Aslan, Emre
    Ozel, Faruk
    Patir, Imren Hatay
    Kus, Mahmut
    Ersoz, Mustafa
    RSC ADVANCES, 2015, 5 (114) : 94025 - 94028
  • [6] First-Principles Study on Cd Doping in Cu2ZnSnS4 and Cu2ZnSnSe4
    Maeda, Tsuyoshi
    Nakamura, Satoshi
    Wada, Takahiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (10)
  • [7] Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaic applications
    Friedlmeier, TM
    Dittrich, H
    Schock, HW
    TERNARY AND MULTINARY COMPOUNDS, 1998, 152 : 345 - 348
  • [8] Electrochemical Synthesis of CU2ZnSnS4 and CU2ZnSnSe4 Thin Films for Solar Cells
    Ikeda, Shigeru
    Septina, Witman
    Lin, Yixin
    Kyoraiseki, Akio
    Harada, Takashi
    Matsumura, Michio
    PROCEEDINGS OF 2013 INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2013, : 1 - 4
  • [9] Cu-Zn disorder in stoichiometric and non-stoichiometric Cu2ZnSnS4/Cu2ZnSnSe4
    Zheng, Yi-Feng
    Yang, Ji-Hui
    Gong, Xin-Gao
    AIP ADVANCES, 2019, 9 (03)
  • [10] Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods
    Botti, Silvana
    Kammerlander, David
    Marques, Miguel A. L.
    APPLIED PHYSICS LETTERS, 2011, 98 (24)