Cu-Zn disorder in stoichiometric and non-stoichiometric Cu2ZnSnS4/Cu2ZnSnSe4

被引:14
|
作者
Zheng, Yi-Feng [1 ,2 ]
Yang, Ji-Hui [1 ]
Gong, Xin-Gao [1 ,2 ]
机构
[1] Fudan Univ, Dept Phys, Key Lab Computat Sci MOE, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; SOLAR-CELL; EFFICIENCY; CU2ZNSNS4; CUINSE2; DEFECTS;
D O I
10.1063/1.5090804
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cu-Zn disorder is unavoidable but plays an important role in high-efficiency Cu2ZnSnS4 and Cu2ZnSnSe4 solar cells. Using the cluster expansion method along with Monte Carlo (MC) simulations, we study the Cu-Zn disorder, considering cases both with and without vacancies. We find that the 2a, 2c, and 2d Wyckoff sites all show order-disorder transitions for both cases, in agreement with recent experiments supporting disorder at all 2a, 2c and 2d sites, but, in contrast to early experiments, supporting Cu-Zn disorder only at 2c and 2d sites. Below the transition temperature in non-stoichiometric cases, we find that excess Zn prefers to occupy 2c over 2a sites due to the greater similarity of 2c sites to 2d sites. Such site preferences indicate that Cu-Zn occupations exhibit some new kind of ordering rather than randomly distributed at 2a and 2c sites. We find that while Cu-Zn disorder reduces the band gap, the site preferences in non-stoichiometric samples increase the band gaps by suppressing Cu-Zn disorder. Generally, lowering annealing temperatures, while increasing Zn and vacancies, will lead to larger band gaps. (C) 2019 Author(s).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Effect of sulfurization temperature on Cu-Zn disorder for non-stoichiometric spray pyrolyzed Cu2ZnSnS4 thin films
    Jeganath, K.
    George, Sajan D.
    Murari, M. S.
    Raviprakash, Y.
    [J]. MATERIALS LETTERS, 2021, 300
  • [2] Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4
    Persson, Clas
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
  • [3] Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell
    Li, Z. Q.
    Shi, J. H.
    Liu, Q. Q.
    Chen, Y. W.
    Sun, Z.
    Yang, Z.
    Huang, S. M.
    [J]. NANOTECHNOLOGY, 2011, 22 (26)
  • [4] Synthesis of highly non-stoichiometric Cu2ZnSnS4 nanoparticles with tunable bandgaps
    Yasushi Hamanaka
    Wataru Oyaizu
    Masanari Kawase
    Toshihiro Kuzuya
    [J]. Journal of Nanoparticle Research, 2017, 19
  • [5] Synthesis of highly non-stoichiometric Cu2ZnSnS4 nanoparticles with tunable bandgaps
    Hamanaka, Yasushi
    Oyaizu, Wataru
    Kawase, Masanari
    Kuzuya, Toshihiro
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2016, 19 (01)
  • [6] Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSnSe4-xSx nanofibers
    Gonce, Mehmet K.
    Dogru, Melike
    Aslan, Emre
    Ozel, Faruk
    Patir, Imren Hatay
    Kus, Mahmut
    Ersoz, Mustafa
    [J]. RSC ADVANCES, 2015, 5 (114) : 94025 - 94028
  • [7] Band Tails and Cu-Zn Disorder in Cu2ZnSnS4 Solar Cells
    Larsen, J. K.
    Scragg, J. J. S.
    Ross, N.
    Platzer-Bjorkman, C.
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 7520 - 7526
  • [8] The effect of Cu-Zn disorder on charge carrier mobility and lifetime in Cu2ZnSnSe4
    Hempel, Hannes
    Eichberger, Rainer
    Repins, Ingrid
    Unold, Thomas
    [J]. THIN SOLID FILMS, 2018, 666 : 40 - 43
  • [9] Influence of Cu2S, SnS and Cu2ZnSnSe4 on optical properties of Cu2ZnSnS4
    Mamedov, D.
    Klopov, M.
    Karazhanov, S. Zh.
    [J]. MATERIALS LETTERS, 2017, 202 : 70 - 72
  • [10] First-Principles Study on Cd Doping in Cu2ZnSnS4 and Cu2ZnSnSe4
    Maeda, Tsuyoshi
    Nakamura, Satoshi
    Wada, Takahiro
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (10)