Anomalous Behavior Detection in Crowded Scenes Using Clustering and Spatio-Temporal Features

被引:5
|
作者
Yang, Meng [1 ,2 ]
Rajasegarar, Sutharshan [3 ]
Rao, Aravinda S. [4 ]
Leckie, Christopher [1 ,2 ]
Palaniswami, Marimuthu [4 ]
机构
[1] Univ Melbourne, Dept Comp & Informat Syst, Melbourne, Vic 3010, Australia
[2] Natl ICT Australia NICTA, Melbourne, Vic 3053, Australia
[3] Deakin Univ, Sch Informat Technol, Melbourne, Vic 3125, Australia
[4] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
来源
关键词
Anomaly detection; Spatio-temporalfeatures; Hyperspherical clustering;
D O I
10.1007/978-3-319-48390-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomalous behavior detection in crowded and unanticipated scenarios is an important problem in real-life applications. Detection of anomalous behaviors such as people standing statically and loitering around a place are the focus of this paper. In order to detect anomalous events and objects, ViBe was used for background modeling and object detection at first. Then, a Kalman filter and Hungarian cost algorithm were implemented for tracking and generating trajectories of people. Next, spatio-temporal features were extracted and represented. Finally, hyperspherical clustering was used for anomaly detection in an unsupervised manner. We investigate three different approaches to extracting and representing spatio-temporal features, and we demonstrate the effectiveness of our proposed feature representation on a standard benchmark dataset and a real-life video surveillance environment.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [41] Pothole detection using spatio-temporal saliency
    Jang, Dong-Won
    Park, Rae-Hong
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (09) : 605 - 612
  • [42] Abnormal behavior detection using hybrid agents in crowded scenes
    Cho, Sang-Hyun
    Kang, Hang-Bong
    [J]. PATTERN RECOGNITION LETTERS, 2014, 44 : 64 - 70
  • [43] TRAT: Tracking by attention using spatio-temporal features
    Saribas, Hasan
    Cevikalp, Hakan
    Kopuklu, Okan
    Uzun, Bedirhan
    [J]. NEUROCOMPUTING, 2022, 492 : 150 - 161
  • [44] Spatio-temporal clustering of epileptic ECOG
    Hegde, Anant
    Erdogmus, Deniz
    Principe, Jose C.
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 4199 - 4202
  • [45] Abnormal Activity Recognition Using Spatio-Temporal Features
    Chathuramali, K. G. Manosha
    Ramasinghe, Sameera
    Rodrigo, Ranga
    [J]. 2014 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2014,
  • [46] Human motion characterization using spatio-temporal features
    Lucena, Manuel J.
    Fuertes, Jose Manuel
    Perez de la Blanca, Nicolas
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2007, 4477 : 72 - +
  • [47] Fire Detection Based on Fractal Analysis and Spatio-Temporal Features
    Monir Torabian
    Hossein Pourghassem
    Homayoun Mahdavi-Nasab
    [J]. Fire Technology, 2021, 57 : 2583 - 2614
  • [48] A PERFORMANCE EVALUATION OF FUSION TECHNIQUES FOR SPATIO-TEMPORAL SALIENCY DETECTION IN DYNAMIC SCENES
    Muddamsetty, Satya M.
    Sidibe, Desire
    Tremeau, Alain
    Meriaudeau, Fabrice
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3924 - 3928
  • [49] Fingerprint Presentation Attack Detection Utilizing Spatio-Temporal Features
    Husseis, Anas
    Liu-Jimenez, Judith
    Sanchez-Reillo, Raul
    [J]. SENSORS, 2021, 21 (06) : 1 - 18
  • [50] Fire Detection Based on Fractal Analysis and Spatio-Temporal Features
    Torabian, Monir
    Pourghassem, Hossein
    Mahdavi-Nasab, Homayoun
    [J]. FIRE TECHNOLOGY, 2021, 57 (05) : 2583 - 2614