Defect detection in CFRP by infrared thermography with CO2 Laser excitation compared to conventional lock-in infrared thermography

被引:27
|
作者
Keo, Sam Ang [1 ,2 ]
Brachelet, Franck [1 ,2 ]
Breaban, Florin [1 ,3 ]
Defer, Didier [1 ,2 ]
机构
[1] PRES Lille Nord France, Lab Genie Civil & GeoEnvironm, Lille, France
[2] Fac Sci Appl, F-62400 Bethune, France
[3] Inst Univ Technol, F-62400 Bethune, France
关键词
Carbon fiber; Defects; Non-destructive testing; CO2; Laser; CONCRETE;
D O I
10.1016/j.compositesb.2014.09.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a NOT by a CO2 Laser infrared thermography applied to defect detection in CFRP. The CO2 Laser is an infrared laser with the wavelength of 10.6 mu m. This excitation has a controllable heating beam by a geometric relation D = 0.01575.d, which allows to heat the samples at a specific position (placed at the distance "d") and area (of a diameter "D"). The PPT interpretation principle was used to reduce the non-uniformity's effect of the excitation causing inhomogeneous heat. The test with this excitation is much faster than the tests with conventional lock-in thermography method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] DETECTION OF INTERNAL DEFECTS IN CFRP BY ULTRASONIC LOCK-IN INFRARED THERMOGRAPHY
    Swiderski, Waldemar
    7TH INTERNATIONAL CONFERENCE INTEGRITY-RELIABILITY-FAILURE (IRF2020), 2020, : 759 - 760
  • [2] Quantitative detection of defect using ultrasound infrared lock-in thermography
    Liu, Hui
    Liu, Junyan
    Wang, Yang
    5TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTICAL TEST AND MEASUREMENT TECHNOLOGY AND EQUIPMENT, 2010, 7656
  • [3] Defect Sizing and Location by Lock-in Photo-Infrared Thermography
    Choi, Manyong
    Kang, Kisoo
    Park, Jeonghak
    Kim, Wontae
    Kim, Koungsuk
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2007, 27 (04) : 321 - 327
  • [4] Defect Detection of Impacted Composite Tubes by Lock-in Photo-Infrared Thermography Technique
    Kim, Kyoung-Suk
    Jeon, So Young
    Jung, Hyun-Chul
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2011, 31 (02) : 139 - 143
  • [5] Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography
    Choi, Manyong
    Kang, Kisoo
    Park, Jeonghak
    Kim, Wontae
    Kim, Koungsuk
    NDT & E INTERNATIONAL, 2008, 41 (02) : 119 - 124
  • [6] Infrared lock-in thermography through glass substrates
    Straube, H.
    Breitenstein, O.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) : 2768 - 2771
  • [7] Advances in Crack Characterization by Lock-In Infrared Thermography
    R. Celorrio
    A. J. Omella
    A. Mendioroz
    A. Oleaga
    A. Salazar
    International Journal of Thermophysics, 2015, 36 : 1202 - 1207
  • [8] Advances in Crack Characterization by Lock-In Infrared Thermography
    Celorrio, R.
    Omella, A. J.
    Mendioroz, A.
    Oleaga, A.
    Salazar, A.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (5-6) : 1202 - 1207
  • [9] Development of LabVIEW Program for Lock-In Infrared Thermography
    Min, Taehoon
    Na, Hyungchul
    Kim, Nohyu
    JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2011, 31 (02) : 127 - 133
  • [10] Open crack depth sizing by laser stimulated infrared lock-in thermography
    Fedala, Y.
    Streza, M.
    Roger, J-P
    Tessier, G.
    Boue, C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (46)