ALMOST BI-LIPSCHITZ EMBEDDINGS AND ALMOST HOMOGENEOUS SETS

被引:0
|
作者
Olson, Eric J. [1 ]
Robinson, James C. [2 ]
机构
[1] Univ Nevada, Dept Math 084, Reno, NV 89557 USA
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
Assouad dimension; Bouligand dimension; doubling spaces; embedding theorems; homogeneous spaces; DIMENSION; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with embeddings of homogeneous spaces into Euclidean spaces. We show that any homogeneous metric space can be embedded into a Hilbert space using an almost bi-Lipschitz mapping (bi-Lipschitz to within logarithmic corrections). The image of this set is no longer homogeneous, but 'almost homogeneous'. We therefore study the problem of embedding an almost homogeneous subset X of a Hilbert space H into a finite-dimensional Euclidean space. We show that if X is a compact subset of a Hilbert space and X - X is almost homogeneous, then, for N sufficiently large, a prevalent set of linear maps from X into R-N are almost bi-Lipschitz between X and its image.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 50 条
  • [31] Qualitative Lipschitz to bi-Lipschitz decomposition
    Bate, David
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [32] Regular mappings and non-existence of bi-Lipschitz embeddings for slit carpets
    David, Guy C.
    Eriksson-Bique, Sylvester
    ADVANCES IN MATHEMATICS, 2020, 364
  • [33] A CHARACTERIZATION OF BI-LIPSCHITZ EMBEDDABLE METRIC SPACES IN TERMS OF LOCAL BI-LIPSCHITZ EMBEDDABILITY
    Seo, Jeehyeon
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (06) : 1179 - 1202
  • [34] Bi-Lipschitz parameterization of surfaces
    Mario Bonk
    Urs Lang
    Mathematische Annalen, 2003, 327 : 135 - 169
  • [35] Bi-Lipschitz Bijections of Z
    Benjamini, Itai
    Shamov, Alexander
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 313 - 324
  • [36] Bi-Lipschitz Sufficiency of Jets
    Valette, Guillaume
    JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) : 963 - 993
  • [37] Local bi-Lipschitz classification of 2-dimensional semialgebraic sets
    Birbrair, L
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (03): : 453 - 472
  • [38] Bi-Lipschitz Sufficiency of Jets
    Guillaume Valette
    Journal of Geometric Analysis, 2009, 19 : 963 - 993
  • [39] Bi-Lipschitz extensions in the plane
    MacManus, P
    JOURNAL D ANALYSE MATHEMATIQUE, 1995, 66 : 85 - 115
  • [40] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27