Timing, Coordination, and Rhythm: Acrobatics at the DNA Replication Fork

被引:20
|
作者
Hamdan, Samir M. [1 ]
van Oijen, Antoine M. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
LAGGING-STRAND SYNTHESIS; BACTERIOPHAGE T7; OKAZAKI FRAGMENT; POLYMERASE-ACTIVITY; PRIMER SYNTHESIS; SINGLE-MOLECULE; BINDING PROTEIN; PRIMASE; PROCESSIVITY; HELICASE;
D O I
10.1074/jbc.R109.022939
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field.
引用
收藏
页码:18979 / 18983
页数:5
相关论文
共 50 条
  • [31] The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest
    Sidorova, Julia M.
    Li, Nianzhen
    Folch, Albert
    Monnat, Raymond J., Jr.
    CELL CYCLE, 2008, 7 (06) : 796 - 807
  • [32] DNA ligase 4 stabilizes the ribosomal DNA array upon fork collapse at the replication fork barrier
    Fritsch, Olivier
    Burkhalter, Martin D.
    Kais, Sanja
    Sogo, Jose M.
    Schaer, Primo
    DNA REPAIR, 2010, 9 (08) : 879 - 888
  • [33] Two essential DNA polymerases at the bacterial replication fork
    Dervyn, E
    Suski, C
    Daniel, R
    Bruand, C
    Chapuis, J
    Errington, J
    Jannière, L
    Ehrlich, SD
    SCIENCE, 2001, 294 (5547) : 1716 - 1719
  • [34] Visualizing replication fork encounters with DNA interstrand crosslinks
    James, Ryan C.
    Bellani, Marina A.
    Zhang, Jing
    Huang, Jing
    Shaik, Althaf
    Pokharel, Durga
    Gali, Himabindu
    Gichimu, Julia
    Thazhathveetil, Arun K.
    Seidman, Michael M.
    DNA REPLICATION-REPAIR INTERFACE, 2021, 661 : 53 - 75
  • [35] RecQ helicases: guardian angels of the DNA replication fork
    Csanád Z. Bachrati
    Ian D. Hickson
    Chromosoma, 2008, 117 : 219 - 233
  • [36] PRE-FORK SYNTHESIS . A MODEL FOR DNA REPLICATION
    HASKELL, EH
    DAVERN, CI
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1969, 64 (03) : 1065 - &
  • [37] DNA Replication Origins and Fork Progression at Mammalian Telomeres
    Higa, Mitsunori
    Fujita, Masatoshi
    Yoshida, Kazumasa
    GENES, 2017, 8 (04):
  • [38] A role for DNA polymerase θ in the timing of DNA replication
    Fernandez-Vidal, Anne
    Guitton-Sert, Laure
    Cadoret, Jean-Charles
    Drac, Marjorie
    Schwob, Etienne
    Baldacci, Giuseppe
    Cazaux, Christophe
    Hoffmann, Jean-Sebastien
    NATURE COMMUNICATIONS, 2014, 5
  • [39] A role for DNA polymerase θ in the timing of DNA replication
    Anne Fernandez-Vidal
    Laure Guitton-Sert
    Jean-Charles Cadoret
    Marjorie Drac
    Etienne Schwob
    Giuseppe Baldacci
    Christophe Cazaux
    Jean-Sébastien Hoffmann
    Nature Communications, 5
  • [40] Yeast replicative DNA polymerases and their role at the replication fork
    Kawasaki, Y
    Sugino, A
    MOLECULES AND CELLS, 2001, 12 (03) : 277 - 285