deepMc: Deep Matrix Completion for Imputation of Single-Cell RNA-seq Data

被引:17
|
作者
Mongia, Aanchal [1 ]
Sengupta, Debarka [1 ,2 ]
Majumdar, Angshul [3 ]
机构
[1] IIIT Delhi, Dept Comp Sci & Engn, New Delhi, India
[2] IIIT Delhi, Ctr Computat Biol, New Delhi, India
[3] IIIT Delhi, Dept Elect & Commun Engn, New Delhi, India
关键词
deep learning; imputation; matrix completion; matrix factorization; scRNA-seq; HETEROGENEITY; EMBRYOS;
D O I
10.1089/cmb.2019.0278
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-seq has inspired new discoveries and innovation in the field of developmental and cell biology for the past few years and is useful for studying cellular responses at individual cell resolution. But, due to the paucity of starting RNA, the data acquired have dropouts. To address this, we propose a deep matrix factorization-based method, deepMc, to impute missing values in gene expression data. For the deep architecture of our approach, we draw our motivation from great success of deep learning in solving various machine learning problems. In this study, we support our method with positive results on several evaluation metrics such as clustering of cell populations, differential expression analysis, and cell type separability.
引用
收藏
页码:1011 / 1019
页数:9
相关论文
共 50 条
  • [21] scRNMF: An imputation method for single-cell RNA-seq data by robust and non-negative matrix factorization
    Qian, Yuqing
    Zou, Quan
    Zhao, Mengyuan
    Liu, Yi
    Guo, Fei
    Ding, Yijie
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (08)
  • [22] Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data
    Qin, Lu
    Zhang, Guangya
    Zhang, Shaoqiang
    Chen, Yong
    ADVANCED SCIENCE, 2024, 11 (29)
  • [23] Effect of imputation on gene network reconstruction from single-cell RNA-seq data
    Ly, Lam-Ha
    Vingron, Martin
    PATTERNS, 2022, 3 (02):
  • [24] scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation
    Miao, Zhun
    Lin, Xinyi
    Li, Jiaqi
    Ho, Joshua
    Meng, Qiuchen
    Zhang, Xuegong
    STATISTICS IN MEDICINE, 2025, 44 (05)
  • [25] CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    Peijie Lin
    Michael Troup
    Joshua W. K. Ho
    Genome Biology, 18
  • [26] Imputation method for single-cell RNA-seq data using neural topic model
    Qi, Yueyang
    Han, Shuangkai
    Tang, Lin
    Liu, Lin
    GIGASCIENCE, 2023, 12
  • [27] A posterior probability based Bayesian method for single-cell RNA-seq data imputation
    Chen, Siqi
    Zheng, Ruiqing
    Tian, Luyi
    Wu, Fang-Xiang
    Li, Min
    METHODS, 2023, 216 : 21 - 38
  • [28] CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    Lin, Peijie
    Troup, Michael
    Ho, Joshua W. K.
    GENOME BIOLOGY, 2017, 18
  • [29] CMF-Impute: an accurate imputation tool for single-cell RNA-seq data
    Xu, Junlin
    Cai, Lijun
    Liao, Bo
    Zhu, Wen
    Yang, JiaLiang
    BIOINFORMATICS, 2020, 36 (10) : 3139 - 3147
  • [30] Single-cell RNA-seq data clustering by deep information fusion
    Ren, Liangrui
    Wang, Jun
    Li, Wei
    Guo, Maozu
    Yu, Guoxian
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (02) : 128 - 137