Carbon Allotropes as Anode Material for Lithium-Ion Batteries

被引:61
|
作者
Rajkamal, A. [1 ]
Thapa, Ranjit [2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Mumbai 400076, Maharashtra, India
[2] SRM Univ AP, Dept Phys, Amaravati 522502, Andhra Pradesh, India
来源
ADVANCED MATERIALS TECHNOLOGIES | 2019年 / 4卷 / 10期
关键词
anodes; batteries; carbon materials; energy storage; hybridization; lithium ion batteries; OF-THE-ART; CATHODE MATERIAL; ENERGY-STORAGE; GRAPHENE MONOLITH; METALLIC CARBON; PENTA-GRAPHENE; SN ANODES; LI; PERFORMANCE; INTERCALATION;
D O I
10.1002/admt.201900307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Anode materials that exhibit high energy density, high power density, long life cycle, and better safety profile for lithium-ion batteries are necessary for the development of electric vehicles. Computational and experimental studies to describe the relevant aspects of carbon allotropes as anode materials are discussed, toward the significant improvement of specific power and energy capacity. The role of types of carbon ring and mixed hybridization (sp, sp(2), and sp(3)) in carbon-based anode materials for Li storage explored. An overview is provided on the procedures used to analyze the storage properties of anode materials using first-principles theoretical methods such as intercalation energy, volume expansion, and open circuit voltage. Finally, the progress, importance, design, and the challenges of carbon-based anode materials are comprehensively discussed.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries
    Wang, GX
    Sun, L
    Bradhurst, DH
    Zhong, S
    Dou, SX
    Liu, HK
    JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 306 (1-2) : 249 - 252
  • [32] Graphene foam as a stable anode material in lithium-ion batteries
    Yang, Jianhang
    Sagar, Rizwan Ur Rehman
    Anwar, Tauseef
    Li, Xiaocheng
    Qian, Zhang
    Liang, Tongxiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (04) : 5226 - 5234
  • [33] Branched Graphene Nanocapsules for Anode Material of Lithium-Ion Batteries
    Hu, Chuangang
    Lv, Lingxiao
    Xue, Jiangli
    Ye, Minghui
    Wang, Lixia
    Qu, Liangti
    CHEMISTRY OF MATERIALS, 2015, 27 (15) : 5253 - 5260
  • [34] A review of research on hematite as anode material for lithium-ion batteries
    Xiaodong Zheng
    Jianlong Li
    Ionics, 2014, 20 : 1651 - 1663
  • [35] Si/Cu composite as anode material for lithium-ion batteries
    Zeng, Hong
    He, Yawen
    Chamas, Mohamad
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [36] Small Molecule Azaacene as an Anode Material for Lithium-Ion Batteries
    Sturman, James W.
    Grignon, Eloi
    McAllister, Bryony T.
    Yim, Chae-Ho
    Baranova, Elena A.
    Seferos, Dwight S.
    Abu-Lebdeh, Yaser
    ENERGY & FUELS, 2023, 37 (17) : 13397 - 13404
  • [37] Novel modified graphite as anode material for lithium-ion batteries
    Pan, QM
    Guo, KK
    Wang, LZ
    Fang, SB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) : A1218 - A1223
  • [38] Crystalline silicon gels as anode material for lithium-ion batteries
    Flores-Lopez, S. L.
    Santos-Gomez, L. D.
    Rey-Raap, N.
    Camean, I.
    Garcia, A. B.
    Arenillas, A.
    Garcia-Granda, S.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E96 - E97
  • [39] Electrochemical characteristics of pyrrhotine as anode material for lithium-ion batteries
    Zheng, Xiaodong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 661 : 483 - 489
  • [40] Research Progress on SiO as Anode Material for Lithium-ion Batteries
    Mu H.
    Feng L.
    Wu L.
    Mao X.
    Liu Z.
    Cailiao Daobao/Materials Reports, 2023, 37 (18):