Reduced C*-algebra of the p-adic group GL(n) II

被引:4
|
作者
Plymen, RJ [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
reduced C*-algebra; tempered dual; Bernstein parameters; Plancherel measure;
D O I
10.1006/jfan.2002.3980
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The reduced C*-algebra of the p-adic group GL(n) admits a Bernstein decomposition. We give a minimal refinement of this decomposition, and provide structure theorems for the reduced Iwahori-Hecke C*-algebra and the reduced spherical C*-algebra. This leads to a very explicit description of the tempered dual of GL(n) in terms of Bernstein parameters and extended quotients. We also prove that Plancherel measure (on the tempered dual of a reductive p-adic group) is rotation-invariant. (C) 2002 Ekevier Science (USA).
引用
收藏
页码:119 / 134
页数:16
相关论文
共 50 条
  • [31] Distinguished Generic Representations of GL(n) over p-adic Fields
    Matringe, Nadir
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (01) : 74 - 95
  • [32] p-Adic Stability In Linear Algebra
    Caruso, Xavier
    Roe, David
    Vaccon, Tristan
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 101 - 108
  • [33] Lie algebra associated with the group of finitary automorphisms of p-adic tree
    Bondarenko, N. V.
    Gupta, C. K.
    Sushchansky, V. I.
    JOURNAL OF ALGEBRA, 2010, 324 (09) : 2198 - 2218
  • [34] Modular Representations of GL(n) Distinguished by GL(n-1) over a p-Adic Field
    Secherre, Vincent
    Venketasubramanian, Coolimuttam G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (14) : 4435 - 4492
  • [35] A proof of the Baum-Connes conjecture for p-adic GL(n)
    Baum, P
    Higson, N
    Plymen, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (02): : 171 - 176
  • [36] INDUCED REPRESENTATIONS OF GL (N,A) FOR P-ADIC DIVISION-ALGEBRAS A
    TADIC, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 405 : 48 - 77
  • [37] On the Second Cohomology of the Norm One Group of a p-Adic Division Algebra
    Ershov, Mikhail
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 72 : 261 - 330
  • [38] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [39] On the Ko of a p-adic group
    Dat, JF
    INVENTIONES MATHEMATICAE, 2000, 140 (01) : 171 - 226
  • [40] The pro-p-Iwahori Hecke algebra of a reductive p-adic group I
    Vigneras, Marie-France
    COMPOSITIO MATHEMATICA, 2016, 152 (04) : 693 - 753