POINT DERIVATIONS AND COHOMOLOGIES OF LIPSCHITZ ALGEBRAS

被引:1
|
作者
Kawamura, Kazuhiro [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
基金
日本学术振兴会;
关键词
Lipschitz algebra; Hochschild cohomology; global homological dimension; de Leeuw map; Banach limit; SIMPLICIAL COHOMOLOGY; BANACH-ALGEBRAS; DIMENSION; HOMOLOGY;
D O I
10.1017/S0013091519000142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a compact metric space (K, d), LipK denotes the Banach algebra of all complex-valued Lipschitz functions on (K, d). We show that the continuous Hochschild cohomology H-n(LipK, (LipK)*) and H-n(LipK, C-e) are both infinite-dimensional vector spaces for each n >= 1 if the space K contains a certain infinite sequence which converges to a point e is an element of K. Here (LipK)* is the dual module of LipK and C-e denotes the complex numbers with a LipK-bimodule structure defined by evaluations of LipK-functions at e. Examples of such metric spaces include all compact Riemannian manifolds, compact geodesic metric spaces and infinite compact subsets of R. In particular, the (small) global homological dimension of LipK is infinite for every such space. Our proof uses the description of point derivations by Sherbert ['The structure of ideals and point derivations in Banach algebras of Lipschitz functions', Trans. Amer. Math. Soc. 111 (1964), 240-272] and directly constructs non-trivial cocycles with the help of alternating cocycles of Johnson ['Higher-dimensional weak amenability', Studia Math. 123 (1997), 117-134]. An alternating construction of cocycles on the basis of the idea of Kleshchev ['Homological dimension of Banach algebras of smooth functions is equal to infinity', Vest. Math. Mosk. Univ. Ser. 1. Mat. Mech. 6 (1988), 57-60] is also discussed.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 50 条
  • [41] Fixed point theorems of order-Lipschitz mappings in Banach algebras
    Jiang S.
    Li Z.
    Fixed Point Theory and Applications, 2016 (1)
  • [42] DERIVATIONS ON SUBTRACTION ALGEBRAS
    Ozturk, Mehmet Ali
    Ceven, Yilmaz
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 24 (04): : 509 - 515
  • [43] DERIVATIONS OF LIE ALGEBRAS
    TOGO, S
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (04) : 690 - &
  • [44] Derivations on Novikov Algebras
    Chengming Bai
    Daoji Meng
    Sui He
    International Journal of Theoretical Physics, 2003, 42 : 507 - 521
  • [45] DERIVATIONS OF QUASITRIANGULAR ALGEBRAS
    WAGNER, BH
    PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (01) : 243 - 255
  • [46] DERIVATIONS ON FRECHET ALGEBRAS
    CARPENTE.RL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A170 - &
  • [47] Characterizations of derivations and Jordan derivations on Banach algebras
    Lu, Fangyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2233 - 2239
  • [48] Jordan Derivations and Lie Derivations on Path Algebras
    Li, Y.
    Wei, F.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 79 - 92
  • [49] Derivations of CSL algebras
    Moore, RL
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (06) : 1739 - 1750
  • [50] Extended derivations of algebras
    Fernandez-Culma, Edison Alberto
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1498 - 1509