A spindle-like apparatus guides bacterial chromosome segregation

被引:252
|
作者
Ptacin, Jerod L. [1 ]
Lee, Steven F. [2 ]
Garner, Ethan C. [3 ]
Toro, Esteban [1 ]
Eckart, Michael [4 ]
Comolli, Luis R. [5 ]
Moerner, We. [2 ]
Shapiro, Lucy [1 ]
机构
[1] Stanford Univ, Dept Dev Biol, Sch Med, Beckman Ctr, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[4] Stanford Univ, Stanford Prot & Nucle Acid Facil, Sch Med, Beckman Ctr, Stanford, CA 94305 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
DNA SEGREGATION; CAULOBACTER-CRESCENTUS; BACILLUS-SUBTILIS; PARTITIONING PROTEIN; PLASMID SEGREGATION; F-PLASMID; BINDING; CELL; SOPA; PARB;
D O I
10.1038/ncb2083
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Until recently, a dedicated mitotic apparatus that segregates newly replicated chromosomes into daughter cells was believed to be unique to eukaryotic cells. Here we demonstrate that the bacterium Caulobacter crescentus segregates its chromosome using a partitioning (Par) apparatus that has surprising similarities to eukaryotic spindles. We show that the C. crescentus ATPase ParA forms linear polymers in vitro and assembles into a narrow linear structure in vivo. The centromere-binding protein ParB binds to and destabilizes ParA structures in vitro. We propose that this ParB-stimulated ParA depolymerization activity moves the centromere to the opposite cell pole through a burnt bridge Brownian ratchet mechanism. Finally, we identify the pole-specific TipN protein(1,2) as a new component of the Par system that is required to maintain the directionality of DNA transfer towards the new cell pole. Our results elucidate a bacterial chromosome segregation mechanism that features basic operating principles similar to eukaryotic mitotic machines, including a multivalent protein complex at the centromere that stimulates the dynamic disassembly of polymers to move chromosomes into daughter compartments.
引用
收藏
页码:791 / U46
页数:16
相关论文
共 50 条
  • [31] Chromosome Segregation: Spindle Mechanics Come To Life
    Dumont, Sophie
    CURRENT BIOLOGY, 2011, 21 (18) : R688 - R690
  • [32] Bacterial Chromosome Organization and Segregation
    Badrinarayanan, Anjana
    Le, Tung B. K.
    Laub, Michael T.
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 31, 2015, 31 : 171 - 199
  • [33] Hydrothermal synthesis of NaEuF4 spindle-like nanocrystals
    Wang, Zhi-Jun
    Tao, Feng
    Cai, Wei-Li
    Yao, Lian-Zeng
    Li, Xiao-Guang
    BULLETIN OF MATERIALS SCIENCE, 2011, 34 (07) : 1371 - 1374
  • [34] Bacterial Chromosome Organization and Segregation
    Toro, Esteban
    Shapiro, Lucy
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2010, 2 (02): : a000349
  • [35] SPINDLE-LIKE FAST RHYTHMS IN EEGS OF LOW-BIRTHWEIGHT INFANTS
    WATANABE, K
    IWASE, K
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 1972, 14 (03): : 373 - &
  • [36] Preparation of spindle-like BiPO4 and its photocatalytic performance
    Li, Xiuping
    Zhao, Rongxiang
    Lin, Kehong
    Gao, Xiaohan
    INORGANIC AND NANO-METAL CHEMISTRY, 2017, 47 (09) : 1328 - 1333
  • [37] Motion-based pH sensing using spindle-like micromotors
    Limei Liu
    Yonggang Dong
    Yunyu Sun
    Mei Liu
    Yajun Su
    Hui Zhang
    Bin Dong
    Nano Research, 2016, 9 : 1310 - 1318
  • [38] Structure and Function of Abnormal Spindle-Like, Microtubule Associated Protein (ASPM)
    Holt, Marcus
    Casas-Mao, David E.
    Bond, Jacqueline
    Peckham, Michelle
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 346A - 346A
  • [39] Chemical synthesis and properties of spindle-like CuO nanostructures with porous nature
    Harish, S.
    Navaneethan, M.
    Archana, J.
    Ponnusamy, S.
    Muthamizhchelvan, C.
    Hayakawa, Y.
    MATERIALS LETTERS, 2015, 139 : 59 - 62
  • [40] Fabrication of spindle-like ZnO architectures for highly sensitive gas sensors
    Chen, Xiaoshuang
    Jing, Xiaoyan
    Wang, Jun
    Liu, Jingyuan
    Song, Dalei
    Liu, Lianhe
    SUPERLATTICES AND MICROSTRUCTURES, 2013, 63 : 204 - 214