Consistent hazard regression estimation by sieved maximum likelihood estimators

被引:0
|
作者
Döhler, S [1 ]
机构
[1] Univ Freiburg, Inst Math Stochast, D-79104 Freiburg, Germany
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider maximum. likelihood estimators in general sieve function classes for the estimation of the conditional log-hazard function of a survival time in a censored data model. We prove consistency of these types of estimators under the assumption that the conditional log-hazard function is continuous, by using results from empirical process theory. As special examples we consider feedforward neural network estimators and radial basis function network estimators.
引用
收藏
页码:553 / 569
页数:17
相关论文
共 50 条