Maximum likelihood estimators in regression models with infinite variance innovations

被引:6
|
作者
Paulaauskas, V
Rachev, ST
机构
[1] Vilnius State Univ, Dept Math, Vilnius, Lithuania
[2] Univ Karlsruhe, Inst Stat & Math Econ, Karlsruhe, Germany
[3] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
关键词
autoregression; stable distributions; Levy processes; maximum likelihood estimators;
D O I
10.1007/s00362-002-0133-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the problem of maximum likelihood (ML) estimation in the classical AR(1) model with i.i.d. symmetric stable innovations with known characteristic exponent and unknown scale parameter. We present an approach that allows us to investigate the properties of ML estimators without making use of numerical procedures. Finally, we introduce a generalization to the multivariate case.
引用
收藏
页码:47 / 65
页数:19
相关论文
共 50 条
  • [1] Maximum likelihood estimators in regression models with infinite variance innovations
    Vygantas Paulaauskas
    Svetlozar T. Rachev
    Statistical Papers, 2003, 44 : 47 - 65
  • [2] Empirical likelihood for LAD estimators in infinite variance ARMA models
    Li, Jinyu
    Liang, Wei
    He, Shuyuan
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (02) : 212 - 219
  • [3] Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models
    Kiviet, Jan F.
    Phillips, Garry D. A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 424 - 448
  • [4] Covariance matrix of maximum likelihood estimators in censored exponential regression models
    Lemonte, Artur J.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (06) : 1765 - 1777
  • [5] Maximum likelihood and restricted maximum likelihood estimators as functions of ordinary least squares and analysis of variance estimators
    Moser, BK
    McCann, MH
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (03) : 631 - 646
  • [6] Asymptotic normality estimators of maximum likelihood for nonparametric multivariate regression models
    Rodriguez-Poo, J
    Sperlich, S
    Vieu, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 61 - 64
  • [7] Maximum likelihood estimators in linear regression models with Ornstein-Uhlenbeck process
    Hu, Hongchang
    Pan, Xiong
    Xu, Lifeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [8] Maximum likelihood estimators in linear regression models with Ornstein-Uhlenbeck process
    Hongchang Hu
    Xiong Pan
    Lifeng Xu
    Journal of Inequalities and Applications, 2014
  • [9] On maximum likelihood estimators in certain multivariate normal mixed models with two variance components
    Gnot, S
    Stemann, D
    Trenkler, G
    Urbanska-Motyka, A
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 17, 1998, : 111 - 119
  • [10] MAXIMUM-LIKELIHOOD ESTIMATORS AND LIKELIHOOD RATIO CRITERIA IN MULTIVARIATE COMPONENTS OF VARIANCE
    ANDERSON, BM
    ANDERSON, TW
    OLKIN, I
    ANNALS OF STATISTICS, 1986, 14 (02): : 405 - 417