Analysis of Epistasis in Natural Traits Using Model Organisms

被引:17
|
作者
Campbell, Richard F. [1 ]
McGrath, Patrick T. [1 ,2 ]
Paaby, Annalise B. [1 ]
机构
[1] Georgia Inst Technol, Dept Biol Sci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Phys, Atlanta, GA 30332 USA
关键词
GENETIC-VARIATION; QUANTITATIVE TRAIT; VARIANTS; HSP90; POLYMORPHISM; DISORDERS; MUTATIONS; PHENOTYPE; SELECTION; LEVEL;
D O I
10.1016/j.tig.2018.08.002
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The ability to detect and understand epistasis in natural populations is important for understanding how biological traits are influenced by genetic variation. However, identification and characterization of epistasis in natural populations remains difficult due to statistical issues that arise as a result of multiple comparisons, and the fact that most genetic variants segregate at low allele frequencies. In this review, we discuss how model organisms may be used to manipulate genotypic combinations to power the detection of epistasis as well as test interactions between specific genes. Findings from a number of species indicate that statistical epistasis is pervasive between natural genetic variants. However, the properties of experimental systems that enable analysis of epistasis also constrain extrapolation of these results back into natural populations.
引用
下载
收藏
页码:883 / 898
页数:16
相关论文
共 50 条
  • [11] A strategy to apply quantitative epistasis analysis on developmental traits
    Labocha, Marta K.
    Yuan, Wang
    Aleman-Meza, Boanerges
    Zhong, Weiwei
    BMC GENETICS, 2017, 18
  • [12] A strategy to apply quantitative epistasis analysis on developmental traits
    Marta K. Labocha
    Wang Yuan
    Boanerges Aleman-Meza
    Weiwei Zhong
    BMC Genetics, 18
  • [13] Developing genetic risk model for quantitative traits considering epistasis
    Park, J.
    Kim, I.
    Chae, J.
    Kim, G.
    Won, H.
    Park, W.
    Kim, J.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 663 - 664
  • [14] Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits
    Zhang, Futao
    Xie, Dan
    Liang, Meimei
    Xiong, Momiao
    PLOS GENETICS, 2016, 12 (04):
  • [15] QTL mapping and epistasis analysis of brace root traits in maize
    L. X. Ku
    Z. H. Sun
    C. L. Wang
    J. Zhang
    R. F. Zhao
    H. Y. Liu
    G. Q. Tai
    Y. H. Chen
    Molecular Breeding, 2012, 30 : 697 - 708
  • [16] QTL mapping and epistasis analysis of brace root traits in maize
    Ku, L. X.
    Sun, Z. H.
    Wang, C. L.
    Zhang, J.
    Zhao, R. F.
    Liu, H. Y.
    Tai, G. Q.
    Chen, Y. H.
    MOLECULAR BREEDING, 2012, 30 (02) : 697 - 708
  • [17] Estimation of epistasis among finite polygenic loci for complex traits with a mixed model using Gibbs sampling
    Lee, Chaeyoung
    Park, Jungdae
    JOURNAL OF BIOMEDICAL INFORMATICS, 2007, 40 (05) : 500 - 506
  • [18] A population genetics model for multiple quantitative traits exhibiting pleiotropy and epistasis
    Taylor, CF
    Higgs, PG
    JOURNAL OF THEORETICAL BIOLOGY, 2000, 203 (04) : 419 - 437
  • [19] Towards natural polyploid model organisms
    Buggs, Richard J. A.
    MOLECULAR ECOLOGY, 2008, 17 (08) : 1875 - 1876
  • [20] Dynamic QTL and epistasis analysis on seedling root traits in upland cotton
    QINGZHI LIANG
    PENGBO LI
    CHENG HU
    HUA HUA
    ZHAOHU LI
    YIHUA RONG
    KUNBO WANG
    JINPING HUA
    Journal of Genetics, 2014, 93 : 63 - 78