K-theory for banach *-algebras

被引:0
|
作者
Laustsen, NJ [1 ]
机构
[1] Univ Copenhagen, Dept Math, DK-2100 Copenhagen O, Denmark
来源
关键词
K-theory; Banach *-algebra;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are two ways to define the K-0-group of a Banach *-algebra, one based on idempotents and algebraic equivalence and another based on projections and Murray-von Neumann equivalence. We show that these two K-0-groups are not in general isomorphic. There are also two ways to define the K-1-group of a Banach *-algebra, one based on homotopy of invertibles and another based on homotopy of unitaries. Again, we show that these two K-1-groups need not be isomorphic.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 50 条
  • [21] On the K-Theory of Graph C*-Algebras
    Gunther Cornelissen
    Oliver Lorscheid
    Matilde Marcolli
    Acta Applicandae Mathematicae, 2008, 102 : 57 - 69
  • [22] On the K-Theory of Graph C*-algebras
    Cornelissen, Gunther
    Lorscheid, Oliver
    Marcolli, Matilde
    ACTA APPLICANDAE MATHEMATICAE, 2008, 102 (01) : 57 - 69
  • [23] K-THEORY over C*-algebras
    Mishchenko, Alexandr S.
    GEOMETRY AND TOPOLOGY OF MANIFOLDS: THE MATHEMATICAL LEGACY OF CHARLES EHRESMANN ON THE OCCASION OF THE HUNDREDTH ANNIVERSARY OF HIS BIRTHDAY, 2007, 76 : 245 - 266
  • [24] Group C*-algebras and K-theory
    Higson, N
    Guentner, E
    NONCOMMUTATIVE GEOMETRY, 2004, 1831 : 137 - 251
  • [25] Homomorphisms of C*-Algebras and Their K-theory
    Parastoo Naderi
    Jamal Rooin
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 465 - 478
  • [26] Nonstable K-theory for Graph Algebras
    P. Ara
    M. A. Moreno
    E. Pardo
    Algebras and Representation Theory, 2007, 10 : 157 - 178
  • [27] The K-theory of bisingular pseudodifferential algebras
    Bohlen, Karsten
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2015, 6 (03) : 361 - 382
  • [28] K-THEORY OF SPECIAL NORMED ALGEBRAS
    DAYTON, BH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (04): : A463 - A463
  • [29] Algebraic K-theory of normed algebras
    Inassaridze, H
    K-THEORY, 2000, 21 (01): : 25 - 56
  • [30] K-Theory for Group C*-algebras
    Baum, Paul F.
    Sanchez-Garcia, Ruben J.
    TOPICS IN ALGEBRAIC AND TOPOLOGICAL K-THEORY, 2011, 2008 : 1 - 43