Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques

被引:167
|
作者
Churikov, A. V. [1 ]
Ivanishchev, A. V. [1 ]
Ivanishcheva, I. A. [1 ]
Sycheva, V. O. [1 ]
Khasanova, N. R. [2 ]
Antipov, E. V. [2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Inst Chem, Saratov 410012, Russia
[2] Moscow MV Lomonosov State Univ, Dept Chem, Moscow 199992, Russia
关键词
Diffusion processes; Insertion host materials; Phase transition; Galvanostatic and potentiostatic intermittent titration technique; Li-ion battery; LOGISTIC DIFFERENTIAL-EQUATION; ELECTROCHEMICAL IMPEDANCE; KINETIC CHARACTERISTICS; GRAPHITE-ELECTRODES; NUMERICAL-ANALYSIS; MANGANESE-DIOXIDE; GENERAL EQUATION; SOLID-SOLUTION; HOST MATERIALS; ION;
D O I
10.1016/j.electacta.2009.12.079
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A new model of lithium-ion transport processes in the LiFePO4 electrode is proposed. This model takes into account the phase transition LiFePO4 <-> FePO4 accompanying reversible lithium intercalation into the electrode during potential or current steps. The diffusion coefficient of Li+ ion and its dependence on the LiFePO4/FePO4 phase ratio have been determined by means of processing of experimental potential and current transients in accordance with the model's equations. The results of galvanostatic and potentiostatic intermittent titration techniques are in good agreement. The value of diffusion coefficient varies within 10(-10)-10(-16) cm(2) s(-1) depending on the lithium content in solid solution LixFePO4 and Li1-xFePO4 (X<0.02) or the LiFePO4/FePO4 phase ratio. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2939 / 2950
页数:12
相关论文
共 50 条
  • [31] Measurement of the Electrochemical Diffusion Coefficient of Li-ion in LiFePO4 by Constant Current Step
    Zeng, Zhifeng
    Zhang, Haiyan
    Liu, Minxia
    Xu, Yongzhao
    MATERIALS FOR ENERGY CONVERSION AND STORAGE, 2012, 519 : 128 - +
  • [32] Correlation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells
    Zheng, Huiyuan
    Tan, Li
    Zhang, Li
    Qu, Qunting
    Wan, Zhongming
    Wang, Yan
    Shen, Ming
    Zheng, Honghe
    ELECTROCHIMICA ACTA, 2015, 173 : 323 - 330
  • [33] Determination of lithium ions by stripping voltammetry using single-crystal LiFePO4
    Fu, Hu
    Xu, Wenhua
    Zhao, Zhongwei
    He, Lihua
    TALANTA, 2024, 269
  • [34] Thermal Stabilities of Some Lithium Salts and Their Electrolyte Solutions With and Without Contact to a LiFePO4 Electrode
    Ping, Ping
    Wang, Qingsong
    Sun, Jinhua
    Xiang, Hongfa
    Chen, Chunhua
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) : A1170 - A1176
  • [35] Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries
    Zaghib, K
    Shim, J
    Guerfi, A
    Charest, P
    Striebel, KA
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) : A207 - A210
  • [36] Determination of Optimum Carbon Content of LiFePO4 Cathode Material for Lithium Ion Batteries
    Goektepe, Hueseyin
    Sahan, Halil
    Patat, Saban
    ASIAN JOURNAL OF CHEMISTRY, 2009, 21 (04) : 3186 - 3192
  • [37] Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode
    Shenouda, Atef Y.
    Liu, Hua K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 477 (1-2) : 498 - 503
  • [38] Composite of LiFePO4 with Titanium Phosphate Phases as Lithium-Ion Battery Electrode Material
    Koenig, Gary M., Jr.
    Ma, Jiwei
    Key, Baris
    Fink, Justin
    Low, Ke-Bin
    Shahbazian-Yassar, Reza
    Belharouak, Ilias
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (41): : 21132 - 21138
  • [39] Refined Grain Enhancing Lithium-Ion Diffusion of LiFePO4 via Air Oxidation
    Shen, Xinjie
    Qin, Zijun
    He, Peipei
    Ren, Xugang
    Li, Yunjiao
    Wu, Feixiang
    Cheng, Yi
    He, Zhenjiang
    COATINGS, 2023, 13 (06)
  • [40] LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition
    Van Hiep Nguyen
    Hal-Bon Gu
    Journal of Applied Electrochemistry, 2014, 44 : 1153 - 1163