A robust algorithm for quadratic optimization under quadratic constraints

被引:15
|
作者
Tuy, Hoang [1 ]
Hoai-Phuong, N. T. [1 ]
机构
[1] Inst Math, Hanoi, Vietnam
关键词
nonconvex global optimization; quadratic optimization under quadratic constraints; branch-reduce-and-bound successive incumbent transcending algorithm; essential optimal solution; robust solution;
D O I
10.1007/s10898-006-9063-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Most existing methods of quadratically constrained quadratic optimization actually solve a refined linear or convex relaxation of the original problem. It turned out, however, that such an approach may sometimes provide an infeasible solution which cannot be accepted as an approximate optimal solution in any reasonable sense. To overcome these limitations a new approach is proposed that guarantees a more appropriate approximate optimal solution which is also stable under small perturbations of the constraints.
引用
收藏
页码:557 / 569
页数:13
相关论文
共 50 条
  • [31] QUADRATIC PROGRAMMING WITH QUADRATIC CONSTRAINTS
    BARON, DP
    NAVAL RESEARCH LOGISTICS, 1972, 19 (02) : 253 - 260
  • [32] An algorithm for quadratic optimization with one quadratic constraint and bounds on the variables
    Fehmers, GC
    Kamp, LPJ
    Sluijter, FW
    INVERSE PROBLEMS, 1998, 14 (04) : 893 - 901
  • [33] Extending the Scope of Robust Quadratic Optimization
    Marandi, Ahmadreza
    Ben-Tal, Aharon
    den Hertog, Dick
    Melenberg, Bertrand
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (01) : 211 - 226
  • [34] Sums of random symmetric matrices and quadratic optimization under orthogonality constraints
    Arkadi Nemirovski
    Mathematical Programming, 2007, 109 : 283 - 317
  • [35] Sums of random symmetric matrices and quadratic optimization under orthogonality constraints
    Nemirovski, Arkadi
    MATHEMATICAL PROGRAMMING, 2007, 109 (2-3) : 283 - 317
  • [36] Robust Quadratic Programming for Price Optimization
    Yabe, Akihiro
    Ito, Shinji
    Fujimaki, Ryohei
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4648 - 4654
  • [37] QUADRATIC OPTIMIZATION PROBLEMS IN ROBUST BEAMFORMING
    ER, MH
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 66 (03) : 431 - 442
  • [38] Packing under convex quadratic constraints
    Klimm, Max
    Pfetsch, Marc E.
    Raber, Rico
    Skutella, Martin
    MATHEMATICAL PROGRAMMING, 2022, 192 (1-2) : 361 - 386
  • [39] Packing Under Convex Quadratic Constraints
    Klimm, Max
    Pfetsch, Marc E.
    Raber, Rico
    Skutella, Martin
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 266 - 279
  • [40] Packing under convex quadratic constraints
    Max Klimm
    Marc E. Pfetsch
    Rico Raber
    Martin Skutella
    Mathematical Programming, 2022, 192 : 361 - 386