Electrical Discharge Machining (EDM) is a non-conventional machining process whose thermoelectric nature makes it suitable for the machining of any material, regardless of its hardness and of its brittleness, as long as it conducts electricity. Despite EDM is a popular process in industry, the fact that it involves phenomena of very distinct natures (electrical, thermal, chemical and metallurgical) together with the difficulty inherent to the experimental study of the discharge process, there is a lack of scientific knowledge about it. The present work aims to help in this sense, providing a novel modeling tool capable of simulating discharge superposition, which allows the prediction of surface topographies and temperature fields due to discharges. Based on the comparison between results of simulations (material removal rates and surface topographies) and experimental measurements the discharge process can be characterized using an inverse method. Here, the basis of the developed model will be presented, together with the methodology employed to find out the parameters which define discharge properties. Results obtained with this inverse method have been included.