Magnetotransport in a strain superlattice of graphene

被引:21
|
作者
Zhang, Yingjie [1 ,2 ]
Kim, Youngseok [3 ]
Gilbert, Matthew J. [3 ,4 ]
Mason, Nadya [2 ,5 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn, 1406 W Green St, Urbana, IL 61801 USA
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[5] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
DIRAC FERMIONS; FIELD;
D O I
10.1063/1.5125462
中图分类号
O59 [应用物理学];
学科分类号
摘要
Three-dimensional (3D) deformation of two-dimensional materials offers a route toward band structure engineering. In the case of graphene, a spatially nonuniform deformation and strain are known to generate an effective magnetic field, i.e., a pseudomagnetic field, although experimental realization of this effect in electronic devices has been challenging. Here, we engineer the 3D deformation profile of graphene to create a strain superlattice and study the resultant magnetotransport behavior both experimentally and via quantum transport simulations. We observe a weakening of superlattice features as we increase the magnetic field, which we find to be consistent with competing interactions between the external magnetic field and the strain-induced pseudomagnetic field. Our results demonstrate that strain superlattices are promising platforms to modulate the band structure and engineer the electronic transport behavior in graphene.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Functional nanoporous graphene superlattice
    Lv, Hualiang
    Yao, Yuxing
    Yuan, Mingyue
    Chen, Guanyu
    Wang, Yuchao
    Rao, Longjun
    Li, Shucong
    Kara, Ufuoma I.
    Dupont, Robert L.
    Zhang, Cheng
    Chen, Boyuan
    Liu, Bo
    Zhou, Xiaodi
    Wu, Renbing
    Adera, Solomon
    Che, Renchao
    Zhang, Xingcai
    Wang, Xiaoguang
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [32] Magnetotransport in a semiconductor superlattice with strong longitudinal electric and transverse magnetic fields
    Shchamkhalova, BS
    Suris, RA
    [J]. PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 1998, 12 : 145 - 159
  • [33] Conductance of a disordered graphene superlattice
    Abedpour, N.
    Esmailpour, Ayoub
    Asgari, Reza
    Tabar, M. Reza Rahimi
    [J]. PHYSICAL REVIEW B, 2009, 79 (16)
  • [34] Multilayer graphene with a superlattice potential
    Ghorashi, Sayed Ali Akbar
    Cano, Jennifer
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [35] Superlattice in collapsed graphene wrinkles
    Tim Verhagen
    Barbara Pacakova
    Milan Bousa
    Uwe Hübner
    Martin Kalbac
    Jana Vejpravova
    Otakar Frank
    [J]. Scientific Reports, 9
  • [36] Functional nanoporous graphene superlattice
    Hualiang Lv
    Yuxing Yao
    Mingyue Yuan
    Guanyu Chen
    Yuchao Wang
    Longjun Rao
    Shucong Li
    Ufuoma I. Kara
    Robert L. Dupont
    Cheng Zhang
    Boyuan Chen
    Bo Liu
    Xiaodi Zhou
    Renbing Wu
    Solomon Adera
    Renchao Che
    Xingcai Zhang
    Xiaoguang Wang
    [J]. Nature Communications, 15
  • [37] Superlattice in collapsed graphene wrinkles
    Verhagen, Tim
    Pacakova, Barbara
    Bousa, Milan
    Huebner, Uwe
    Kalbac, Martin
    Vejpravova, Jana
    Frank, Otakar
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [38] Plasmons in a planar graphene superlattice
    P. V. Ratnikov
    A. P. Silin
    [J]. JETP Letters, 2015, 102 : 713 - 719
  • [39] Plasmons in a Planar Graphene Superlattice
    Ratnikov, P. V.
    Silin, A. P.
    [J]. JETP LETTERS, 2015, 102 (11) : 713 - 719
  • [40] Valley notch filter in a graphene strain superlattice: Green's function and machine learning approach
    Torres, V
    Silva, P.
    de Souza, E. A. T.
    Silva, L. A.
    Bahamon, D. A.
    [J]. PHYSICAL REVIEW B, 2019, 100 (20)