Parameter estimation of non-linear systems with Hammerstein models using neuro-fuzzy and polynomial approximation approaches

被引:0
|
作者
Vieira, J [1 ]
Mota, A [1 ]
机构
[1] Escola Super Tecnol Castelo Branco, Dept Engn Electrotecn, P-6000 Castelo Branco, Portugal
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents two different approaches for parameter estimation of non-linear systems with Hammerstein models. The Hammerstein model consists in the cascade connection of two blocks: a non-linear static part and a linear dynamic part. For modelling the non-linear static function part two different techniques were used: neuro-fuzzy and Polynomial approximation approaches. The Neuro-Fuzzy Hammerstein Model (NFHM) approach uses a zero-order Takagi-Sugeno fuzzy model to approximate the non-linear static part and is tuned using gradient decent algorithm. The Polynomial Approximation Hammerstein Model (PAHM) approach uses a polynomial of order n to approximate the non-linear static part and is tuned using a least squares algorithm. For the linear dynamic part both algorithms use the least squares parameter estimation. The methods were implemented off-line, in two steps: first, estimation of the nonlinear static parameters and second estimation of the linear dynamic parameters. Finally, a gas water heater non-linear system was modelled as an illustrative example of these two approaches.
引用
收藏
页码:849 / 854
页数:6
相关论文
共 50 条
  • [1] Parameter estimation of neuro-fuzzy based Hammerstein controlled autoregressive autoregressive moving average systems
    Lyu, Bensheng
    Jia, Li
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1829 - 1834
  • [2] Highly efficient parameter estimation algorithms for Hammerstein non-linear systems
    Mao, Yawen
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (04): : 477 - 485
  • [3] Fuzzy control of non-linear systems using parameter-dependent polynomial fuzzy model
    Lam, H. K.
    Seneviratne, L. D.
    Ban, X.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (11): : 1645 - 1653
  • [4] Common-rail Pressure Estimation using a Neuro-Fuzzy architecture with Local Hammerstein Models
    Ioanas, Gelu Laurentiu
    Dragomir, Toma Leonida
    2013 IEEE 8TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2013), 2013, : 281 - 286
  • [5] An improvement of non-linear neuro-fuzzy model properties
    Čermák, Petr
    Pokorný, Miroslav
    Neural Network World, 2001, 11 (05) : 503 - 523
  • [6] THE PRECISION OF PROBABILITY ESTIMATION WITH THE POLYNOMIAL-APPROXIMATION OF NON-LINEAR SYSTEMS
    BORUKAYEV, TB
    RADIOTEKHNIKA I ELEKTRONIKA, 1983, 28 (04): : 803 - 805
  • [7] Performance of fuzzy and neuro-fuzzy controllers on an unstable non-linear plant
    Jorge Penco, Jose
    Roberto Modesti, Mario
    2018 ARGENTINE CONFERENCE ON AUTOMATIC CONTROL (AADECA), 2018,
  • [8] A neuro-fuzzy identification of non-linear transient systems: Application to a pilot refrigeration plant
    Franco, I. C.
    Dall'Agnol, M.
    Costa, T. V.
    Fileti, A. M. F.
    Silva, F. V.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (08): : 2063 - 2075
  • [9] Modelling and Control of a Non-linear Inverted Pendulum Using an Adaptive Neuro-Fuzzy Controller
    Al-Mekhalfi, Mohammed A. A.
    Wahid, Herman
    RECENT TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2018, 5 : 218 - 225
  • [10] Non-linear channel equalization using computationally efficient neuro-fuzzy channel equalizer
    Sahu, PK
    Patra, SK
    Panigrahi, SP
    2002 IEEE INTERNATIONAL CONFERENCE ON PERSONAL WIRELESS COMMUNICATIONS, 2002, : 16 - 19