Energy-Efficient Object Detection Using Semantic Decomposition

被引:6
|
作者
Panda, Priyadarshini [1 ]
Venkataramani, Swagath [1 ]
Sengupta, Abhronil [1 ]
Raghunathan, Anand [1 ]
Roy, Kaushik [1 ]
机构
[1] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
Energy efficiency; multistage classification; neural networks; semantic (color/texture) decomposition;
D O I
10.1109/TVLSI.2017.2707077
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, we present a new approach to optimize energy efficiency of object detection tasks using semantic decomposition to build a hierarchical classification framework. We observe that certain semantic information like color/texture is common across various images in real-world data sets for object detection applications. We exploit these common semantic features to distinguish the objects of interest from the remaining inputs (nonobjects of interest) in a data set at a lower computational effort. We propose a 2-stage hierarchical classification framework, with increasing levels of complexity, wherein the first stage is trained to recognize the broad representative semantic features relevant to the object of interest. The first stage rejects the input instances that do not have the representative features and passes only the relevant instance to the second stage. Our methodology thus allows us to reject certain information at lower complexity and utilize the full computational effort of a network only on a smaller fraction of inputs resulting in energyefficient detection.
引用
收藏
页码:2673 / 2677
页数:5
相关论文
共 50 条
  • [21] An Energy-Efficient, Fast FPGA Hardware Architecture for OpenCV-Compatible Object Detection
    Brousseau, Braiden
    Rose, Jonathan
    2012 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT'12), 2012, : 166 - 173
  • [22] An energy-efficient deep convolutional neural networks coprocessor for multi-object detection
    Wu, Yuancong
    Wang, J. J.
    Qian, Kun
    Liu, Yanchen
    Guo, Rui
    Hu, S. G.
    Yu, Q.
    Chen, T. P.
    Liu, Y.
    Rong, Limei
    MICROELECTRONICS JOURNAL, 2020, 98
  • [23] An Energy-Efficient Matching Accelerator Using Matching Prediction for Mobile Object Recognition
    Choi, Seongrim
    Lee, Hwanyong
    Nam, Byeong-Gyu
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2016, 16 (02) : 251 - 254
  • [24] An Energy-Efficient Reconfigurable AI-Based Object Detection and Tracking Processor Supporting Online Object Learning
    Gong, Yuchuan
    Zhang, Teng
    Guo, Hongtao
    Liu, Qingsong
    Que, Luying
    Jia, Conghan
    Huang, Jiahui
    Liu, Ye
    Gan, Jiayan
    Xie, Yuxiang
    Zhou, Yong
    Liu, Lili
    Xiang, Xiaoqiang
    Chang, Liang
    Yan, Rui
    Zhou, Jun
    IEEE SOLID-STATE CIRCUITS LETTERS, 2022, 5 : 78 - 81
  • [25] Energy-efficient detection in sensor networks
    Appadwedula, S
    Veeravalli, VV
    Jones, DL
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2005, 23 (04) : 693 - 702
  • [26] Energy-efficient detection in sensor networks
    Appadwedula, S
    Jones, DL
    Veeravalli, VV
    FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 764 - 771
  • [27] An Energy-Efficient Object Tracking Algorithm in Sensor Networks
    Ren, Qianqian
    Gao, Hong
    Jiang, Shouxu
    Li, Jianzhong
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PROCEEDINGS, 2008, 5258 : 237 - 248
  • [28] An Ultra-Fast and Energy-Efficient Object Tracker
    Luo, Zhao
    Ye, Qiting
    Zhao, Shengwei
    Ge, Shiming
    2017 IEEE THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2017), 2017, : 248 - 249
  • [29] An Energy-Efficient CNN Accelerator for Multi-object Real-Time Semantic Segmentation in Autonomous Vehicle
    Jung, Jueun
    Kim, Seungbin
    Jang, Wuyoung
    Jeong, Hoichang
    Lee, Kyuho
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 36 - 40
  • [30] Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection
    Fisne, Alparslan
    Yurtsever, M. Mucahit Enes
    Eken, Suleyman
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12787 - 12797