On Aharoni's rainbow generalization of the Caccetta-Haggkvist conjecture

被引:1
|
作者
Hompe, Patrick [1 ]
Pelikanova, Petra [2 ]
Pokorna, Aneta [2 ]
Spirkl, Sophie [1 ]
机构
[1] Univ Waterloo, Waterloo, ON, Canada
[2] Charles Univ Prague, Prague, Czech Republic
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
Directed graph; Rainbow; Caccetta-Haggkvist conjecture; Directed cycle;
D O I
10.1016/j.disc.2021.112319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a digraph G and v is an element of V(G), let delta(+)(v) be the number of out-neighbors of v in G. The Caccetta-Haggkvist conjecture states that for all k >= 1, if G is a digraph with n = |V(G)| such that delta(+)(v) >= k for all v is an element of V(G), then G contains a directed cycle of length at most [n/k]. In Aharoni et al. (2019), Aharoni proposes a generalization of this conjecture, that a simple edge-colored graph on n vertices with n color classes, each of size k, has a rainbow cycle of length at most.n/k.. In this paper, we prove this conjecture if each color class has size Omega(k log k). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Chen’s conjecture and its generalization
    Xuegong Sun
    Lixia Dai
    Chinese Annals of Mathematics, Series B, 2013, 34 : 957 - 962
  • [32] On a Projective Generalization of Alperin's Conjecture
    Robinson G.R.
    Algebras and Representation, 1998, 1 (2) : 129 - 134
  • [33] On a subfactor generalization of Wall's conjecture
    Guralnick, Robert
    Xu, Feng
    JOURNAL OF ALGEBRA, 2011, 332 (01) : 457 - 468
  • [34] A Possible Generalization of Maeda's Conjecture
    Tsaknias, Panagiotis
    COMPUTATIONS WITH MODULAR FORMS, 2014, 6 : 317 - 329
  • [35] A Generalization of Siegel's Theorem and Hall's Conjecture
    Everest, Graham
    Mahe, Valery
    EXPERIMENTAL MATHEMATICS, 2009, 18 (01) : 1 - 9
  • [36] A multiquadratic field generalization of Artin's conjecture
    Stadnik, M. E.
    JOURNAL OF NUMBER THEORY, 2017, 170 : 75 - 102
  • [37] A generalization of Fulton's conjecture for arbitrary groups
    Belkale, Prakash
    Kumar, Shrawan
    Ressayre, Nicolas
    MATHEMATISCHE ANNALEN, 2012, 354 (02) : 401 - 425
  • [38] Empirical Verification of a Generalization of Goldbach's Conjecture
    Juhasz, Zsofia
    Bartalos, Mate
    Magyar, Peter
    Farkas, Gabor
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (04)
  • [39] A proof of the Multijoints Conjecture and Carbery's generalization
    Zhang, Ruixiang
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (08) : 2405 - 2417
  • [40] Decomposable clutters and a generalization of Simon's conjecture
    Bigdeli, Mina
    Pour, Ali Akbar Yazdan
    Zaare-Nahandi, Rashid
    JOURNAL OF ALGEBRA, 2019, 531 : 102 - 124