Robust Randomized Matchings

被引:5
|
作者
Matuschke, Jannik [1 ,2 ]
Skutella, Martin [3 ]
Soto, Jose A. [4 ,5 ]
机构
[1] Tech Univ Munich, TUM Sch Management, D-80333 Munich, Germany
[2] Tech Univ Munich, Dept Math, D-80333 Munich, Germany
[3] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[4] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[5] Univ Chile, CMM, Santiago, Chile
关键词
robust matchings; randomization; INDEPENDENCE SYSTEMS; ALGORITHMS; GREEDY;
D O I
10.1287/moor.2017.0878
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The following game is played on a weighted graph: Alice selects a matching M and Bob selects a number k. Alice's payoff is the ratio of the weight of the k heaviest edges of M to the maximum weight of a matching of size at most k. If M guarantees a payoff of at least a then it is called alpha-robust. In 2002, Hassin and Rubinstein gave an algorithm that returns a 1/root 2 -robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein's bound.
引用
收藏
页码:675 / 692
页数:18
相关论文
共 50 条
  • [31] Orthogonal matchings
    Anstee, RP
    Caccetta, L
    DISCRETE MATHEMATICS, 1998, 179 (1-3) : 37 - 47
  • [32] Orthogonal matchings
    Discrete Math, 1-3 (37-47):
  • [33] SHAPES OF MATCHINGS
    STROK, M
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1976, 24 (04): : 265 - 270
  • [34] ON OPTIMAL MATCHINGS
    AJTAI, M
    KOMLOS, J
    TUSNADY, G
    COMBINATORICA, 1984, 4 (04) : 259 - 264
  • [35] Orthogonal matchings
    Stong, R
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 513 - 518
  • [36] Connected matchings
    Cameron, K
    COMBINATORIAL OPTIMIZATION - EUREKA, YOU SHRINK: PAPERS DEDICATED TO JACK EDMONDS, 2003, 2570 : 34 - 38
  • [37] PERFECT MATCHINGS
    BALINSKI, ML
    SIAM REVIEW, 1970, 12 (04) : 570 - &
  • [38] Matchings and pfaffians
    Nambiar, KK
    MATHEMATICAL AND COMPUTER MODELLING, 1997, 25 (02) : 1 - 2
  • [39] Enumerating dissimilar minimum cost perfect and error-correcting bipartite matchings for robust data matching
    Blumenthal, David B.
    Bougleux, Sébastien
    Dignös, Anton
    Gamper, Johann
    Information Sciences, 2022, 596 : 202 - 221
  • [40] Ordered Unavoidable Sub-Structures in Matchings and Random Matchings
    Dudek, Andrzej
    Grytczuk, Jaros law
    Rucinski, Andrzej
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):