Robust Randomized Matchings

被引:5
|
作者
Matuschke, Jannik [1 ,2 ]
Skutella, Martin [3 ]
Soto, Jose A. [4 ,5 ]
机构
[1] Tech Univ Munich, TUM Sch Management, D-80333 Munich, Germany
[2] Tech Univ Munich, Dept Math, D-80333 Munich, Germany
[3] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[4] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[5] Univ Chile, CMM, Santiago, Chile
关键词
robust matchings; randomization; INDEPENDENCE SYSTEMS; ALGORITHMS; GREEDY;
D O I
10.1287/moor.2017.0878
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The following game is played on a weighted graph: Alice selects a matching M and Bob selects a number k. Alice's payoff is the ratio of the weight of the k heaviest edges of M to the maximum weight of a matching of size at most k. If M guarantees a payoff of at least a then it is called alpha-robust. In 2002, Hassin and Rubinstein gave an algorithm that returns a 1/root 2 -robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein's bound.
引用
收藏
页码:675 / 692
页数:18
相关论文
共 50 条
  • [1] Robust matchings
    Hassin, R
    Rubinstein, S
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) : 530 - 537
  • [2] On randomized greedy matchings
    Miller, Z
    Pritikin, D
    RANDOM STRUCTURES & ALGORITHMS, 1997, 10 (03) : 353 - 383
  • [3] Robust matchings and maximum clustering
    Hassin, R
    Rubinstein, S
    ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 251 - 258
  • [4] Robust Matchings and Matroid Intersections
    Fujita, Ryo
    Kobayashi, Yusuke
    Makino, Kazuhisa
    ALGORITHMS-ESA 2010, PT II, 2010, 6347 : 123 - +
  • [5] ROBUST MATCHINGS AND MATROID INTERSECTIONS
    Fujita, Ryo
    Kobayashi, Yusuke
    Makino, Kazuhisa
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (03) : 1234 - 1256
  • [6] Robust recoverable perfect matchings
    Dourado, Mitre Costa
    Meierling, Dirk
    Penso, Lucia D.
    Rautenbach, Dieter
    Protti, Fabio
    de Almeida, Aline Ribeiro
    NETWORKS, 2015, 66 (03) : 210 - 213
  • [7] Maximum cardinality matchings on trees by randomized local search
    Giel, Oliver
    Wegener, Ingo
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 539 - +
  • [8] A simple randomized parallel algorithm for maximal f-matchings
    Garrido, O
    Jarominek, S
    Lingas, A
    Rytter, W
    INFORMATION PROCESSING LETTERS, 1996, 57 (02) : 83 - 87
  • [9] A SIMPLE RANDOMIZED PARALLEL ALGORITHM FOR MAXIMAL F-MATCHINGS
    GARRIDO, O
    JAROMINEK, S
    LINGAS, A
    RYTTER, W
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 583 : 165 - 176
  • [10] Randomized sequential importance sampling for estimating the number of perfect matchings in bipartite graphs
    Diaconis, Persi
    Kolesnik, Brett
    ADVANCES IN APPLIED MATHEMATICS, 2021, 131