Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage

被引:70
|
作者
Liu, Jia [1 ]
Yang, Hongxing [1 ]
Zhou, Yuekuan [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Serv Engn, Kowloon, Hong Kong, Peoples R China
基金
国家重点研发计划;
关键词
Solar photovoltaic; Wind turbine; Hydrogen vehicle storage; Net-zero energy community; Peer-to-peer energy trading; POWER-SYSTEM; PERFORMANCE; ELECTRICITY; HEAT;
D O I
10.1016/j.apenergy.2021.117206
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents peer energy trading management approaches in a net-zero energy community with fundamental units of university campus, commercial office and high-rise residential building groups as per actual energy consumption and simulation data. Hybrid solar photovoltaic and wind turbine systems are developed for power supply to the diversified community integrated with three hydrogen vehicle storage groups based on the TRNSYS platform. An individual peer energy trading price model is proposed for the diversified community to allocate an individual peer trading price to each building group according to its intrinsic energy characteristic and grid import price. The time-of-use peer trading management strategies are further developed for both uniform and individual energy trading price modes to improve the grid flexibility and economy. The study results indicate that the peer energy trading management in the individual trading price mode improves the renewable energy self-consumption ratio by 18.76% and load cover ratio by 11.23% for the net-zero energy community compared with the peer-to-grid trading. The time-of-use trading management in the individual trading price mode can reduce the net grid import energy by 8.93%, grid penalty cost by 142.87%, annual electricity cost by 14.54%, and equivalent carbon emissions by 8.93% (982.36 tCO2), respectively. This comprehensive feasibility study on the typical community with the proposed peer trading price model and management strategies provides significant guidance for renewable energy and hydrogen storage applications in large-scale communities within high-density urban contexts.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] A Hierarchical Peer-to-Peer Energy Trading in Community Microgrid Distribution Systems
    Paudel, Amrit
    Beng, Gooi Hoay
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [42] Blockchain-Based Fully Peer-to-Peer Energy Trading Strategies for Residential Energy Systems
    AlSkaif, Tarek
    Crespo-Vazquez, Jose L.
    Sekuloski, Milos
    van Leeuwen, Gijs
    Catalao, Joao P. S.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (01) : 231 - 241
  • [43] Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid
    Zhang, Wen-Yi
    Chen, Yue
    Wang, Yi
    Xu, Yunjian
    ENERGY, 2023, 274
  • [44] Robust optimization and pricing of Peer-to-Peer energy trading considering battery storage
    Khodoomi, Mohammad
    Sahebi, Hadi
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 179
  • [45] A Blockchain Peer-to-Peer Energy Trading System for Microgrids
    Gao, Jianbin
    Asamoah, Kwame Omono
    Xia, Qi
    Sifah, Emmanuel Boateng
    Amankona, Obiri Isaac
    Xia, Hu
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (05) : 3944 - 3960
  • [46] Designing Fairness in Autonomous Peer-to-peer Energy Trading
    Behrunani, Varsha N.
    Irvine, Andrew
    Belgioioso, Giuseppe
    Heer, Philipp
    Lygeros, John
    Dorfler, Florian
    IFAC PAPERSONLINE, 2023, 56 (02): : 3751 - 3756
  • [47] Peer-to-Peer Energy Trading with Privacy and Fair Exchange
    Hou, Dongkun
    Zhang, Jie
    Cui, Shujie
    Liu, Joseph K.
    2024 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN, BLOCKCHAIN 2024, 2024, : 174 - 182
  • [48] Multi-area Peer-to-Peer Energy Trading
    Yao, Haotian
    Xiang, Yue
    Liu, Junyong
    Hu, Shuai
    2020 IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (SCEMS 2020), 2020, : 837 - 842
  • [49] Blockchain-enabled Peer-to-Peer energy trading
    Wongthongtham, Pornpit
    Marrable, Daniel
    Abu-Salih, Bilal
    Liu, Xin
    Morrison, Greg
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 94
  • [50] Peer-to-peer energy trading using blockchain technology
    R, Sitharthan
    Padmanaban, Sanjeevikumar
    Dhanabalan, Shanmuga Sundar
    M, Rajesh
    Energy Reports, 2022, 8 : 2348 - 2350