A survey on deep learning and its applications

被引:759
|
作者
Dong, Shi [1 ,2 ]
Wang, Ping [1 ]
Abbas, Khushnood [1 ]
机构
[1] Zhoukou Normal Univ, Sch Comp Sci & Technol, Zhoukou 466000, Henan, Peoples R China
[2] Beijing Univ Posts & Telecommun, State key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
关键词
Deep learning; Stacked auto encoder; Deep belief networks; Deep Boltzmann machine; Convolutional neural network; OBJECT DETECTION; NEURAL-NETWORKS; VEHICLE DETECTION; IMAGE; CLASSIFICATION; SEGMENTATION; ALGORITHM; DROPOUT; SYSTEMS;
D O I
10.1016/j.cosrev.2021.100379
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to be closer to its primary goal-artificial intelligence. This paper mainly adopts the summary and the induction methods of deep learning. Firstly, it introduces the global development and the current situation of deep learning. Secondly, it describes the structural principle, the characteristics, and some kinds of classic models of deep learning, such as stacked auto encoder, deep belief network, deep Boltzmann machine, and convolutional neural network. Thirdly, it presents the latest developments and applications of deep learning in many fields such as speech processing, computer vision, natural language processing, and medical applications. Finally, it puts forward the problems and the future research directions of deep learning. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Deep Learning on Point Clouds and Its Application: A Survey
    Liu, Weiping
    Sun, Jia
    Li, Wanyi
    Hu, Ting
    Wang, Peng
    SENSORS, 2019, 19 (19)
  • [42] A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning
    Ali, Haider
    Chen, Dian
    Harrington, Matthew
    Salazar, Nathaniel
    Al Ameedi, Mohannad
    Khan, Ahmad Faraz
    Butt, Ali R.
    Cho, Jin-Hee
    IEEE ACCESS, 2023, 11 : 120095 - 120130
  • [43] A Survey on Deep Learning-Based Vehicular Communication Applications
    Lin, Chia-Hung
    Lin, Yu-Chien
    Wu, Yen-Jung
    Chung, Wei-Ho
    Lee, Ta-Sung
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2021, 93 (04): : 369 - 388
  • [44] A survey on deep reinforcement learning for audio-based applications
    Latif, Siddique
    Cuayahuitl, Heriberto
    Pervez, Farrukh
    Shamshad, Fahad
    Ali, Hafiz Shehbaz
    Cambria, Erik
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2193 - 2240
  • [45] A Survey on Deep Learning-Based Vehicular Communication Applications
    Chia-Hung Lin
    Yu-Chien Lin
    Yen-Jung Wu
    Wei-Ho Chung
    Ta-Sung Lee
    Journal of Signal Processing Systems, 2021, 93 : 369 - 388
  • [46] A survey on deep reinforcement learning for audio-based applications
    Siddique Latif
    Heriberto Cuayáhuitl
    Farrukh Pervez
    Fahad Shamshad
    Hafiz Shehbaz Ali
    Erik Cambria
    Artificial Intelligence Review, 2023, 56 : 2193 - 2240
  • [47] A Survey of Applications of Deep Learning in Radio Signal Modulation Recognition
    Wang, Tiange
    Yang, Guangsong
    Chen, Penghui
    Xu, Zhenghua
    Jiang, Mengxi
    Ye, Qiubo
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [48] Applications of deep learning in fish habitat monitoring: A tutorial and survey
    Saleh, Alzayat
    Sheaves, Marcus
    Jerry, Dean
    Azghadi, Mostafa Rahimi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [49] Big data analytics deep learning techniques and applications: A survey
    Selmy, Hend A.
    Mohamed, Hoda K.
    Medhat, Walaa
    INFORMATION SYSTEMS, 2024, 120
  • [50] A survey on deep learning based reenactment methods for deepfake applications
    Dhanyalakshmi, Ramamurthy
    Popirlan, Claudiu-Ionut
    Hemanth, Duraisamy Jude
    IET IMAGE PROCESSING, 2024,