Spherical nilpotent orbits and abelian subalgebras in isotropy representations

被引:4
|
作者
Gandini, Jacopo [1 ]
Frajria, Pierluigi Moseneder [2 ]
Papi, Paolo [3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] Politecn Milan, Polo Reg Como, Via Valleggio 11, I-22100 Como, Italy
[3] Sapienza Univ Roma, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
关键词
SYMMETRIC SPACES; IDEALS;
D O I
10.1112/jlms.12022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected semisimple algebraic group with Lie algebra g, let G(0) subset of G be the symmetric subgroup defined by an algebraic involution sigma and let g(1) subset of g be the isotropy representation of G(0). Given an abelian subalgebra a of g contained in g(1) and stable under the action of some Borel subgroup B-0 subset of G(0), we classify the B-0-orbits in a and characterize the sphericity of G(0)a. Our main tool is the combinatorics of sigma-minuscule elements in the affine Weyl group of g and that of strongly orthogonal roots in Hermitian symmetric spaces.
引用
收藏
页码:323 / 352
页数:30
相关论文
共 50 条