On graded Thierrin radicals of graded rings

被引:12
|
作者
Ilic-Georgijevic, Emil [1 ]
机构
[1] Univ Sarajevo, Fac Civil Engn, Patriotske Lige 30, Sarajevo 71000, Bosnia & Herceg
关键词
Graded rings and modules; maximal modular one-sided ideal; Thierrin radical;
D O I
10.1080/00927872.2016.1248243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the graded Thierrin radical and the classical Thierrin radical of a graded ring, which is the direct sum of a family of its additive subgroups indexed by a nonempty set, under the assumption that the product of homogeneous elements is again homogeneous. There are two versions of this graded radical, the graded Thierrin and the large graded Thierrin radical. We establish several characterizations of the graded Thierrin radical and prove that the largest homogeneous ideal contained in the classical Thierrin radical of a graded ring coincides with the large graded Thierrin radical of that ring.
引用
收藏
页码:3886 / 3891
页数:6
相关论文
共 50 条
  • [21] Graded antisimple radicals
    Cai, CR
    Fang, HJ
    Wei, JC
    ACTA MATHEMATICA HUNGARICA, 1999, 82 (03) : 207 - 216
  • [22] Graded antisimple radicals
    Chuanren C.
    Hongjing F.
    Junchao W.
    Acta Mathematica Hungarica, 1999, 82 (3) : 207 - 216
  • [23] ON PERFECT GRADED RINGS
    BEATTIE, M
    JESPERS, E
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (08) : 2363 - 2371
  • [24] On arbitrarily graded rings
    Francisco J Navarro Izquierdo
    Antonio J Calderón Martín
    Proceedings - Mathematical Sciences, 2019, 129
  • [25] The dimensions of graded rings
    Ducos, Lionel
    JOURNAL OF ALGEBRA, 2010, 324 (10) : 2692 - 2717
  • [26] Multiplication graded rings
    Escoriza, J
    Torrecillas, B
    ALGEBRA AND NUMBER THEORY, 2000, 208 : 127 - 136
  • [27] GRADED DEDEKIND RINGS
    VANDENBERG, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1985, 35 (01) : 105 - 115
  • [28] On arbitrarily graded rings
    Navarro Izquierdo, Francisco J.
    Calderon Martin, Antonio J.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (02):
  • [29] IBN for graded rings
    Nastasescu, C
    Torrecillas, B
    Van Oystaeyen, F
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) : 1351 - 1360
  • [30] ON GROUPOID GRADED RINGS
    KELAREV, AV
    JOURNAL OF ALGEBRA, 1995, 178 (02) : 391 - 399